• Biology of the neonate · Jan 1999

    Comparative Study

    High-frequency oscillatory ventilation, partial liquid ventilation, or conventional mechanical ventilation in newborn piglets with saline lavage-induced acute lung injury. A comparison of gas-exchange efficacy and lung histomorphology.

    • P L Degraeuwe, F B Thunnissen, G D Vos, and C E Blanco.
    • Department of Paediatrics, University Hospital Maastricht, The Netherlands. pde@skin.azm.nl
    • Biol. Neonate. 1999 Jan 1;75(2):118-29.

    AbstractIt has been reported that, in diseased lungs, either partial liquid ventilation (PLV) or high-frequency oscillatory ventilation (HFOV) can improve oxygenation better and with less lung injury than conventional mechanical ventilation (CMV). This study was intended as a preclinical comparison between the effects of HFOV, PLV and CMV on gas exchange, lung mechanics and histology. Fifteen anesthetized newborn piglets, with respiratory insufficiency due to repeated saline lung lavage, were allocated to either a PLV, HFOV or CMV (n = 5 each) strategy, and treated for 4 h. Within 30 min of commencing therapy, PLV, HFOV, and CMV improved arterial PO2 (Pa,O2), alveoloarterial oxygen gradient (P(A-a),O2), oxygenation index (OI), venous admixture (va), and arterial PCO2 (Pa,CO2). After 4 h, oxygenation parameters (Pa,O2, P(A-a),O2, OI and venous admixture) were significantly better in the HFOV group than in the PLV group; the CMV group showed a higher Pa,O2 and lower OI than the PLV group. Gas exchange at the end of the experiment was not different from baseline in the HFOV and CMV groups. Lung histology and morphometry were performed after perfusion-fixation at endotracheal deflation pressure corresponding to mean airway pressure at the end of the experiment. Lung injury score and mean linear intercept were not different between the three treatment groups. We conclude that in this model, gas exchange improved significantly in all three ventilation strategies. Indices of oxygenation improved less during PLV. The saline lavage-induced acute lung injury model used as in this study, is less stable than previously thought. The final lung injury is not influenced by the ventilation strategy. We speculate that the impaired gas exchange during PLV is an expression of diffusion limitation and ventilation-perfusion mismatch in a recovering lung.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.