• Physiological measurement · Feb 2013

    Obstructive sleep apnea screening by integrating snore feature classes.

    • U R Abeyratne, S de Silva, C Hukins, and B Duce.
    • School of Information Technology and Electrical Engineering, The University of Queensland, St. Lucia, Brisbane, Australia. udantha@itee.uq.edu.au
    • Physiol Meas. 2013 Feb 1;34(2):99-121.

    AbstractObstructive sleep apnea (OSA) is a serious sleep disorder with high community prevalence. More than 80% of OSA suffers remain undiagnosed. Polysomnography (PSG) is the current reference standard used for OSA diagnosis. It is expensive, inconvenient and demands the extensive involvement of a sleep technologist. At present, a low cost, unattended, convenient OSA screening technique is an urgent requirement. Snoring is always almost associated with OSA and is one of the earliest nocturnal symptoms. With the onset of sleep, the upper airway undergoes both functional and structural changes, leading to spatially and temporally distributed sites conducive to snore sound (SS) generation. The goal of this paper is to investigate the possibility of developing a snore based multi-feature class OSA screening tool by integrating snore features that capture functional, structural, and spatio-temporal dependences of SS. In this paper, we focused our attention to the features in voiced parts of a snore, where quasi-repetitive packets of energy are visible. Individual snore feature classes were then optimized using logistic regression for optimum OSA diagnostic performance. Consequently, all feature classes were integrated and optimized to obtain optimum OSA classification sensitivity and specificity. We also augmented snore features with neck circumference, which is a one-time measurement readily available at no extra cost. The performance of the proposed method was evaluated using snore recordings from 86 subjects (51 males and 35 females). Data from each subject consisted of 6-8 h long sound recordings, made concurrently with routine PSG in a clinical sleep laboratory. Clinical diagnosis supported by standard PSG was used as the reference diagnosis to compare our results against. Our proposed techniques resulted in a sensitivity of 93±9% with specificity 93±9% for females and sensitivity of 92±6% with specificity 93±7% for males at an AHI decision threshold of 15 events/h. These results indicate that our method holds the potential as a tool for population screening of OSA in an unattended environment.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…