• Kidney international · Aug 2001

    "Avian-type" renal medullary tubule organization causes immaturity of urine-concentrating ability in neonates.

    • W Liu, T Morimoto, Y Kondo, K Iinuma, S Uchida, and M Imai.
    • Department of Pediatrics, Tohoku University School of Medicine, Sendai, Miyagi, Japan.
    • Kidney Int. 2001 Aug 1;60(2):680-93.

    BackgroundWhile neonatal kidneys are not powerful in concentrating urine, they already dilute urine as efficiently as adult kidneys. To elucidate the basis for this paradoxical immaturity in urine-concentrating ability, we investigated the function of Henle's loop and collecting ducts (IMCDs) in the inner medulla of neonatal rat kidneys.MethodsAnalyses of individual renal tubules in the inner medulla of neonatal and adult rat kidneys were performed by measuring mRNA expression of membrane transporters, transepithelial voltages, and isotopic water and ion fluxes. Immunofluorescent identification of the rCCC2 and rCLC-K1 using polyclonal antibodies was also performed in neonatal and adult kidney slices.ResultsOn day 1, the transepithelial voltages (V(Ts)) in the thin ascending limbs (tALs) and IMCDs were 14.6 +/- 1.1 mV (N = 27) and -42.7 +/- 6.1 mV (N = 14), respectively. The V(Ts) in the thin descending limbs (tDLs) were zero on day 1. The V(Ts) in the tALs were strongly inhibited by luminal bumetanide or basolateral ouabain, suggesting the presence of a NaCl reabsorption mechanism similar to that in the thick ascending limb (TAL). The diffusional voltage (V(D)) of the tAL due to transepithelial NaCl gradient was almost insensitive to a chloride channel blocker 5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB). The V(Ts) in the IMCDs were strongly inhibited by luminal amiloride. On day 1, both the tDL and tAL were impermeable to water, indicating the water impermeability of the entire loop. Diffusional water permeability (P(dw)) and urea permeabilities (P(urea)) in the IMCDs indicated virtual impermeability to water and urea on day 1. Stimulation by vasopressin (1 nmol/L) revealed that only P(dw) was sensitive to vasopressin by day 14. A partial isoosmolar replacement of luminal urea by NaCl evoked negligible water flux across the neonatal IMCDs, indicating the absence of urea-dependent volume flux in the neonatal IMCD. These transport characteristics in each neonatal tubule are similar to those in quail kidneys. Identification of mRNAs and immunofluorescent studies for specific transporters, including rAQP-1, rCCC2, rCLC-K1, rENaC beta subunit, rAQP-2, and rUT-A1, supported these findings.ConclusionWe hypothesize that the renal medullary tubule organization of neonatal rats shares a tremendous similarity with avian renal medulla. The qualitative changes in the organization of medullary tubules may be primarily responsible for the immature urine-concentrating ability in mammalian neonates.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.