Kidney international
-
Most organisms respond to a hypertonic environment by accumulating small organic solutes. In contrast to high concentrations of electrolytes, the small organic solutes do not perturb the activity of enzymes and other macromolecules within the cell. ⋯ The activation of TonEBP by hypertonicity results from its translocation to the nucleus as well as an increase in TonEBP mRNA and protein. TonEBP may have a role beyond the response to tonicity since it is highly expressed in activated lymphocytes and in developing tissues.
-
Kidney international · Aug 2001
Clinical TrialSustained low-efficiency dialysis for critically ill patients requiring renal replacement therapy.
The replacement of renal function for critically ill patients is procedurally complex and expensive, and none of the available techniques have proven superiority in terms of benefit to patient mortality. In hemodynamically unstable or severely catabolic patients, however, the continuous therapies have practical and theoretical advantages when compared with conventional intermittent hemodialysis (IHD). ⋯ SLED is a viable alternative to traditional continuous renal replacement therapies for critically ill patients in whom IHD has failed or been withheld, although prospective studies directly comparing two modalities are required to define the exact role for SLED in this setting.
-
Kidney international · Aug 2001
"Avian-type" renal medullary tubule organization causes immaturity of urine-concentrating ability in neonates.
While neonatal kidneys are not powerful in concentrating urine, they already dilute urine as efficiently as adult kidneys. To elucidate the basis for this paradoxical immaturity in urine-concentrating ability, we investigated the function of Henle's loop and collecting ducts (IMCDs) in the inner medulla of neonatal rat kidneys. ⋯ We hypothesize that the renal medullary tubule organization of neonatal rats shares a tremendous similarity with avian renal medulla. The qualitative changes in the organization of medullary tubules may be primarily responsible for the immature urine-concentrating ability in mammalian neonates.