• Acta Neurochir. Suppl. · Jan 2007

    Review

    An introduction to operative neuromodulation and functional neuroprosthetics, the new frontiers of clinical neuroscience and biotechnology.

    • D E Sakas, I G Panourias, B A Simpson, and E S Krames.
    • P. S. Kokkalis Hellenic Center for Neurosurgical Research, Athens, Greece. sakasde@med.uoa.gr
    • Acta Neurochir. Suppl. 2007 Jan 1;97(Pt 1):3-10.

    AbstractOperative neuromodulation is the field of altering electrically or chemically the signal transmission in the nervous system by implanted devices in order to excite, inhibit or tune the activities of neurons or neural networks and produce therapeutic effects. It is a rapidly evolving biomedical and high-technology field on the cutting-edge of developments across a wide range of scientific disciplines. The authors review relevant literature on the neuromodulation procedures that are performed in the spinal cord or peripheral nerves in order to treat a considerable number of conditions such as (a) chronic pain (craniofacial, somatic, pelvic, limb, or due to failed back surgery), (b) spasticity (due to spinal trauma, multiple sclerosis, upper motor neuron disease, dystonia, cerebral palsy, cerebrovascular disease or head trauma), (c) respiratory disorders, (d) cardiovascular ischemia, (e) neuropathic bladder, and (f) bowel dysfunction of neural cause. Functional neuroprosthetics, a field of operative neuromodulation, encompasses the design, construction and implantation of artificial devices capable of generating electrical stimuli, thereby, replacing the function of damaged parts of the nervous system. The present article also reviews important literature on functional neuroprostheses, functional electrical stimulation (FES), and various emerging applications based on microsystems devices, neural engineering, neuroaugmentation, neurostimulation, and assistive technologies. The authors highlight promising lines of research such as endoneural prostheses for peripheral nerve stimulation, closed-loop systems for responsive neurostimulation or implanted microwires for microstimulation of the spinal cord to enable movements of paralyzed limbs. The above growing scientific fields, in combination with biological regenerative methods, are certainly going to enhance the practice of neuromodulation. The range of neuromodulatory procedures in the spine and peripheral nerves and the dynamics of the biomedical and technological domains which are reviewed in this article indicate that new breakthroughs are likely to improve substantially the quality of life of patients who are severely disabled by neurological disorders.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…