• Anesthesia and analgesia · Nov 1997

    Quantitative differences in the production and toxicity of CF2=BrCl versus CH2F-O-C(=CF2)(CF3) (compound A): the safety of halothane does not indicate the safety of sevoflurane.

    • E I Eger, P Ionescu, M J Laster, D Gong, R B Weiskopf, and R L Kerschmann.
    • Department of Anesthesia, University of California, San Francisco 94143-0464, USA.
    • Anesth. Analg. 1997 Nov 1;85(5):1164-70.

    UnlabelledCarbon dioxide absorbents degrade both halothane and sevoflurane to toxic unsaturated compounds (CF2=CBrCl and CH2F-O-C[=CF2][CF3] [i.e., Compound A], respectively). Given the long history of safe administration of halothane, comparable toxicities of these degradation products would imply a similar safety of sevoflurane. We therefore examined CF2=CBrCl in the context of four issues relevant to previous studies of the toxicity of Compound A: 1) reactivity of the degradation product in vitro; 2) rate of its production in vitro; 3) its in vivo toxicity; 4) importance of the beta-lyase pathway to the toxicity in vivo. We found the following. 1) CF2=CBrCl is less reactive than Compound A, degrading in human serum albumin at one-fifth the rate of Compound A. 2) Over a 3-h period of "anesthesia," a standard circle system containing Baralyme (Allied Healthcare Products, Inc., St. Louis, MO) produces 30 times as much Compound A from a minimum alveolar anesthetic concentration (MAC) concentration of sevoflurane as CF2=CBrCl from a MAC concentration of halothane; with soda lime, the difference is 60-fold. Correcting for differences in uptake of halothane versus sevoflurane decreases the differences to 20-40 times. 3) For a 3-h administration to rats, the partial pressure of Compound A causing minimal renal injury or necrosis of half the affected tubule cells exceeds the partial pressure of CF2=CBrCl causing minimal injury or necrosis of half the affected tubule cells by a factor of approximately 4-6. Thus, the ratio of production (Item 2 above) to the partial pressure causing injury with CF2=CBrCl is approximately a quarter of that ratio for Compound A. 4) Compounds that block the beta-lyase pathway either do not change (acivicin) or decrease (aminooxyacetic acid; AOAA) renal injury from CF2=CBrCl in rats, whereas these compounds increase (acivicin) or do not change (AOAA) injury from Compound A. We conclude that the safety of halothane cannot be used to support the safety of sevoflurane.ImplicationsCarbon dioxide absorbents degrade halothane and sevoflurane to unsaturated compounds nephrotoxic to rats. Relative to sevoflurane's degradation product, halothane's degradation product has less toxicity relative to production, less reactivity, and a different mechanism of injury. The clinical absence of halothane nephrotoxicity does not necessarily indicate a similar absence for sevoflurane.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.