• J. Neurophysiol. · Apr 2001

    Responses and afferent pathways of superficial and deeper c(1)-c(2) spinal cells to intrapericardial algogenic chemicals in rats.

    • C Qin, M J Chandler, K E Miller, and R D Foreman.
    • Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73190.
    • J. Neurophysiol. 2001 Apr 1;85(4):1522-32.

    AbstractElectrical stimulation of vagal afferents or cardiopulmonary sympathetic afferent fibers excites C(1)--C(2) spinal neurons. The purposes of this study were to compare the responses of superficial (depth <0.35 mm) and deeper C(1)--C(2) spinal neurons to noxious chemical stimulation of cardiac afferents and determine the relative contribution of vagal and sympathetic afferent pathways for transmission of noxious cardiac afferent input to C(1)--C(2) neurons. Extracellular potentials of single C(1)--C(2) neurons were recorded in pentobarbital anesthetized and paralyzed male rats. A catheter was placed in the pericardial sac to administer a mixture of algogenic chemicals (0.2 ml) that contained adenosine (10(-3) M), bradykinin, histamine, serotonin, and prostaglandin E(2) (10(-5) M each). Intrapericardial chemicals changed the activity of 20/106 (19%) C(1)--C(2) spinal neurons in the superficial laminae, whereas 76/147 (52%) deeper neurons responded to cardiac noxious input (P < 0.01). Of 96 neurons responsive to cardiac inputs, 48 (50%) were excited (E), 41 (43%) were inhibited (I), and 7 were excited/inhibited (E-I) by intrapericardial chemicals. E or I neurons responsive to intrapericardial chemicals were subdivided into two groups: short-lasting (SL) and long-lasting (LL) response patterns. In superficial gray matter, excitatory responses to cardiac inputs were more likely to be LL-E than SL-E neurons. Mechanical stimulation of the somatic field from the head, neck, and shoulder areas excited 85 of 95 (89%) C(1)--C(2) spinal neurons that responded to intrapericardial chemicals; 31 neurons were classified as wide dynamic range, 49 were high threshold, 5 responded only to joint movement, and no neuron was classified as low threshold. For superficial neurons, 53% had small somatic fields and 21% had bilateral fields. In contrast, 31% of the deeper neurons had small somatic fields and 46% had bilateral fields. Ipsilateral cervical vagotomy interrupted cardiac noxious input to 8/30 (6 E, 2 I) neurons; sequential transection of the contralateral cervical vagus nerve (bilateral vagotomy) eliminated the responses to intrapericardial chemicals in 4/22 (3 E, 1 I) neurons. Spinal transection at C(6)--C(7) segments to interrupt effects of sympathetic afferent input abolished responses to cardiac input in 10/10 (7 E, 3 I) neurons that still responded after bilateral vagotomy. Results of this study support the concept that C(1)-C(2) superficial and deeper spinal neurons play a role in integrating cardiac noxious inputs that travel in both the cervical vagal and/or thoracic sympathetic afferent nerves.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.