• Anesthesia and analgesia · Aug 2014

    The Role of Hippocampal Tau Protein Phosphorylation in Isoflurane-Induced Cognitive Dysfunction in Transgenic APP695 Mice.

    • Changsheng Li, Sufang Liu, Ying Xing, and Feng Tao.
    • From the College of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, China; Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; College of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Department of Biomedical Sciences, Texas A&M University Baylor College of Dentistry, Dallas, Texas.
    • Anesth. Analg. 2014 Aug 1; 119 (2): 413-419.

    BackgroundPrevious studies have shown that exposure to inhaled anesthetics can cause cognitive dysfunction, suggesting that general anesthesia might be a risk factor for the development of Alzheimer disease. However, the underlying mechanisms remain to be elucidated. In the present study, we tested our hypothesis that enhanced tau protein phosphorylation in hippocampus contributes to isoflurane-induced cognitive dysfunction in a mouse model of Alzheimer disease.MethodsFifty-four male wild-type (WT) mice (12 months old) and 54 male amyloid precursor protein 695 (APP695) mice (12 months old) were either anesthetized for 4 hours with 1.0 minimum alveolar concentration isoflurane or sham-anesthetized (control). Learning and memory behaviors were measured using the Morris Water Maze test for mice. Phosphorylation of hippocampal tau protein at Ser262 site was analyzed with quantitative Western blotting.ResultsIn the Morris Water Maze test, both WT and transgenic APP695 mice showed decreased latency times during a 4-day training period. Isoflurane exposure significantly increased the latency times on days 2 and 3 in WT mice as well as on days 3 and 4 in APP695 mice (WT: P = 0.005 for day 2 and P = 0.002 for day 3; APP695: P = 0.001 for day 3 and P < 0.0001 for day 4) and reduced platform quadrant times (WT: P < 0.0001; APP695: P < 0.0001) in both types of mice. Compared with WT mice, transgenic APP695 mice displayed worse learning and memory behaviors after isoflurane exposure (P = 0.0005 for escape latency testing on day 4 training; P = 0.009 for platform probe testing). Western blot analysis showed that the levels of phosphorylation of hippocampal tau protein at Ser262 site (tau[pS262]) in the transgenic APP695 mice were higher than those in WT mice (P < 0.0001) and that isoflurane exposure time dependently enhanced the hippocampal tau[pS262] levels in both types of mice, but this effect was much more significant in the transgenic APP695 mice (P < 0.0001). Our data also showed that isoflurane exposure had no effect on the expression of total tau protein in the hippocampi of all mice (P ≥ 0.54).ConclusionsIsoflurane may induce cognitive dysfunction by enhancing phosphorylation of hippocampal tau protein at Ser262 site, and this effect is more significant in transgenic APP695 mice.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.