• J. Neurophysiol. · Dec 2009

    Altered GABAA,slow inhibition and network oscillations in mice lacking the GABAA receptor beta3 subunit.

    • Harald Hentschke, Claudia Benkwitz, Matthew I Banks, Mark G Perkins, Gregg E Homanics, and Robert A Pearce.
    • Department of Anesthesiology, University of Wisconsin, Madison, WI 53792, USA.
    • J. Neurophysiol. 2009 Dec 1;102(6):3643-55.

    AbstractPhasic GABAergic inhibition in hippocampus and neocortex falls into two kinetically distinct categories, GABA(A,fast) and GABA(A,slow). In hippocampal area CA1, GABA(A,fast) is generally believed to underlie gamma oscillations, whereas the contribution of GABA(A,slow) to hippocampal rhythms has been speculative. Hypothesizing that GABA(A) receptors containing the beta(3) subunit contribute to GABA(A,slow) inhibition and that slow inhibitory synapses control excitability as well as contribute to network rhythms, we investigated the consequences of this subunit's absence on synaptic inhibition and network function. In pyramidal neurons of GABA(A) receptor beta(3) subunit-deficient (beta(3)(-/-)) mice, spontaneous GABA(A,slow) inhibitory postsynaptic currents (IPSCs) were much less frequent, and evoked GABA(A,slow) currents were much smaller than in wild-type mice. Fittingly, long-lasting recurrent inhibition of population spikes was less powerful in the mutant, indicating that receptors containing beta(3) subunits contribute substantially to GABA(A,slow) currents in pyramidal neurons. By contrast, slow inhibitory control of GABA(A,fast)-producing interneurons was unaffected in beta(3)(-/-) mice. In vivo hippocampal network activity was markedly different in the two genotypes. In beta(3)(-/-) mice, epileptiform activity was observed, and theta oscillations were weaker, slower, less regular and less well coordinated across laminae compared with wild-type mice, whereas gamma oscillations were weaker and faster. The amplitude modulation of gamma oscillations at theta frequency ("nesting") was preserved but was less well coordinated with theta oscillations. With the caveat that seizure-induced changes in inhibitory circuits might have contributed to the changes observed in the mutant animals, our results point to a strong contribution of beta(3) subunits to slow GABAergic inhibition onto pyramidal neurons but not onto GABA(A,fast) -producing interneurons and support different roles for these slow inhibitory synapses in the generation and coordination of hippocampal network rhythms.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.