• J. Neurosci. Res. · Sep 2009

    Spinal microglial proliferation is evident in a rat model of painful disc herniation both in the presence of behavioral hypersensitivity and following minocycline treatment sufficient to attenuate allodynia.

    • Sarah M Rothman, Benjamin B Guarino, and Beth A Winkelstein.
    • Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6321, USA.
    • J. Neurosci. Res. 2009 Sep 1;87(12):2709-17.

    AbstractAlthough spinal glia acquire a reactive profile in radiculopathy, glial cell proliferation remains largely unstudied. This study investigated spinal glial proliferation in a model simulating painful disc herniation; the C7 nerve root underwent compression and chromic gut suture exposure or sham procedures. A subset of injured rats received minocycline injections prior to injury. Allodynia was assessed and bromodeoxyuridine (BrdU) was injected 2 hr before tissue harvest on day 1 or 3. Spinal cell proliferation and phenotype identification were assayed by fluorescent colabeling with antibodies to BrdU and either glial fibrillary acidic protein (astrocytes) or Iba1 (microglia). At day 1, ipsilateral allodynia was significantly increased (P < 0.001) for injury over sham. Minocycline treatment significantly decreased ipsilateral allodynia to sham levels at day 1 (P < 0.001). At day 3, ipsilateral allodynia remained and contralateral allodynia was also present for injury (P< 0.003) over sham. The number of BrdU-positive cells in the ipsilateral spinal dorsal horn at day 1 after injury was significantly elevated (P < 0.001) over sham. Approximately 70% of BrdU-positive cells labeled positively for Iba1; dividing microglia were significantly increased (P < 0.004) in the ipsilateral dorsal horn at day 1 following injury compared with sham. Spinal cellular proliferation after injury was not changed by minocycline injection. By day 3, the number of BrdU-positive cells had returned to sham levels bilaterally. Data indicate that spinal microglia proliferate after injury but that proliferation is not abolished by minocycline treatment that attenuates allodynia, indicating that spinal microglial proliferation may be related to injury and may not be linked to changes in sensory perception.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.