• J Cogn Neurosci · Apr 2004

    Comparative Study

    Interpolation and extrapolation in human behavior and neural networks.

    • Emmanuel Guigon.
    • INSERM U483, Universitacuté Pierre et Marie Curie, Paris, France. guigon@ccr.jussieu.fr
    • J Cogn Neurosci. 2004 Apr 1;16(3):382-9.

    AbstractUnlike most artificial systems, the brain is able to face situations that it has not learned or even encountered before. This ability is not in general echoed by the properties of most neural networks. Here, we show that neural computation based on least-square error learning between populations of intensity-coded neurons can explain interpolation and extrapolation capacities of the nervous system in sensorimotor and cognitive tasks. We present simulations for function learning experiments, auditory-visual behavior, and visuomotor transformations. The results suggest that induction in human behavior, be it sensorimotor or cognitive, could arise from a common neural associative mechanism.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…