Journal of cognitive neuroscience
-
Comparative Study
Reward-related reversal learning after surgical excisions in orbito-frontal or dorsolateral prefrontal cortex in humans.
Neurophysiological studies in primates and neuroimaging studies in humans suggest that the orbito-frontal cortex is involved in representing the reward value of stimuli and in the rapid learning and relearning of associations between visual stimuli and rewarding or punishing outcomes. In the present study, we tested patients with circumscribed surgical lesions in different regions of the frontal lobe on a new visual discrimination reversal test, which, in an fMRI study (O'Doherty, Kringelbach, Rolls, Hornak, & Andrews, 2001), produced bilateral orbito-frontal cortex activation in normal subjects. In this task, touching one of two simultaneously presented patterns produced reward or loss of imaginary money delivered on a probabilistic basis to minimize the usefulness of verbal strategies. ⋯ The results thus show that the orbital prefrontal cortex is required bilaterally for monitoring changes in the reward value of stimuli and using this to guide behavior in the task; whereas the dorsolateral prefrontal cortex, if it produces deficits in the task, does so for reasons related to executive functions, such as the control of attention. Thus, the ability to determine which information is relevant when making a choice of pattern can be disrupted by a dorsolateral lesion on either side, whereas the ability to use this information to guide behavior is not disrupted by a unilateral lesion in either the left or the right orbito-frontal cortex, but is severely impaired by a bilateral lesion in this region. Because both abilities are important in many of the tasks and decisions that arise in the course of daily life, the present results are relevant to understanding the difficulties faced by patients after surgical excisions in different frontal brain regions.
-
Comparative Study
Interpolation and extrapolation in human behavior and neural networks.
Unlike most artificial systems, the brain is able to face situations that it has not learned or even encountered before. This ability is not in general echoed by the properties of most neural networks. ⋯ We present simulations for function learning experiments, auditory-visual behavior, and visuomotor transformations. The results suggest that induction in human behavior, be it sensorimotor or cognitive, could arise from a common neural associative mechanism.