• J. Neurophysiol. · May 2002

    Neural representations of sinusoidal amplitude and frequency modulations in the primary auditory cortex of awake primates.

    • Li Liang, Thomas Lu, and Xiaoqin Wang.
    • Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
    • J. Neurophysiol. 2002 May 1;87(5):2237-61.

    AbstractWe investigated neural coding of sinusoidally modulated tones (sAM and sFM) in the primary auditory cortex (A1) of awake marmoset monkeys, demonstrating that there are systematic cortical representations of embedded temporal features that are based on both average discharge rate and stimulus-synchronized discharge patterns. The rate-representation appears to be coded alongside the stimulus-synchronized discharges, such that the auditory cortex has access to both rate and temporal representations of the stimulus at high and low frequencies, respectively. Furthermore, we showed that individual auditory cortical neurons, as well as populations of neurons, have common features in their responses to both sAM and sFM stimuli. These results may explain the similarities in the perception of sAM and sFM stimuli as well as the different perceptual qualities effected by different modulation frequencies. The main findings include the following. 1) Responses of cortical neurons to sAM and sFM stimuli in awake marmosets were generally much stronger than responses to unmodulated tones. Some neurons responded to sAM or sFM stimuli but not to pure tones. 2) The discharge rate-based modulation transfer function typically had a band-pass shape and was centered at a preferred modulation frequency (rBMF). Population-averaged mean firing rate peaked at 16- to 32-Hz modulation frequency, indicating that the A1 was maximally excited by this frequency range of temporal modulations. 3) Only approximately 60% of recorded units showed statistically significant discharge synchrony to the modulation waveform of sAM or sFM stimuli. The discharge synchrony-based best modulation frequency (tBMF) was typically lower than the rBMF measured from the same neuron. The distribution of rBMF over the population of neurons was approximately one octave higher than the distribution of tBMF. 4) There was a high degree of similarity between cortical responses to sAM and sFM stimuli that was reflected in both discharge rate- or synchrony-based response measures. 5) Inhibition appeared to be a contributing factor in limiting responses at modulation frequencies above the rBMF of a neuron. And 6) neurons with shorter response latencies tended to have higher tBMF and maximum discharge synchrony frequency than those with longer response latencies. rBMF was not significantly correlated with the minimum response latency.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.