• Neuroscience · Jun 2016

    Preferred recycling pathway by internalized PGE2 EP4 receptor following agonist stimulation in cultured dorsal root ganglion neurons contributes to enhanced EP4 receptor sensitivity.

    • Bruno St-Jacques and Weiya Ma.
    • Douglas Mental Health University Institute, McGill University, Montréal, Québec H4H 1R3, Canada.
    • Neuroscience. 2016 Jun 21; 326: 56-68.

    AbstractProstaglandin E2 (PGE2), a well-known pain mediator abundantly produced in injured tissues, sensitizes nociceptive dorsal root ganglion (DRG) neurons (nociceptors) through its four EP receptors (EP1-4). Our prior study showed that PGE2 or EP4 agonist stimulates EP4 externalization and this event was not only suppressed by the inhibitor of anterograde export, but also by the recycling inhibitor (St-Jacques and Ma, 2013). These data suggest that EP4 recycling also contributes to agonist-enhanced EP4 surface abundance. In the current study, we tested this hypothesis using antibody-feeding-based internalization assay, recycling assay and FITC-PGE2 binding assay. We observed that selective EP4 agonist 1-hydroxy-PGE1 (1-OH-PGE1) or CAY10850 time- and concentration-dependently increased EP4 internalization in cultured DRG neuron. Internalized EP4 was predominantly localized in the early endosomes and recycling endosomes, but rarely in the late endosomes and lysosomes. These observations were confirmed by FITC-PGE2 binding assay. We further revealed that 1-OH-PGE1 or CAY10850 time- and concentration-dependently increased EP4 recycling. Double exposures to 1-OH-PGE1 induced a greater increase in calcitonin gene-related peptide (CGRP) release than a single exposure or vehicle exposure, an event blocked by pre-treatment with the recycling inhibitor monensin. Our data suggest that EP4 recycling contributes to agonist-induced cell surface abundance and consequently enhanced receptor sensitivity. Facilitating EP4 externalization and recycling is a novel mechanism underlying PGE2-induced nociceptor sensitization.Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…