• Brain research bulletin · Jan 2008

    Long-lasting descending and transitory short-term spinal controls on deep spinal dorsal horn nociceptive-specific neurons in response to persistent nociception.

    • Hao-Jun You, Francis C Colpaert, and Lars Arendt-Nielsen.
    • Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, PR China. yhj@hst.aau.dk
    • Brain Res. Bull. 2008 Jan 31;75(1):34-41.

    AbstractUnder intact and spinalized conditions, we compared the responses of deep spinal dorsal horn (DH) nociceptive-specific (NS) and wide-dynamic range (WDR) neurons to subcutaneous bee venom (BV, 0.2 mg/50 microl)-induced persistent nociception. In contrast to the monophasic, long-lasting (34-81 min) WDR neuron responses in both intact and spinalized conditions, BV in NS neurons elicited short-term (<10 min) firing in intact, and long-term (>1 h) biphasic firing in spinalized rats. The BV-induced long-term biphasic NS neuron activities in spinalized condition consisted of a first, early phase (4-13 min) of firing occurred immediately after the BV injection, and a second phase of tonic firing that lasted for 28-74 min. The two phases were separated by a period that lasted 4-11 min during which there was very little neuronal activity. The data suggest that in the presence of peripheral nociception, a transitory (about 5-13 min) spinal segmental inhibitory control and a long-lasting descending inhibitory control govern deep spinal NS neuron but not WDR neuron activity. Previous reports assessing spinally organized motor activities showed a spinal WDR neuron well-controlled monophasic long-lasting withdrawal reflex in response to BV injection in both intact and spinalized conditions. In contrast, the current data suggest that unlike spinal WDR neurons, deep spinal DH NS neurons do not modulate spinal motor output during the persistent nociception. Using the neurokinin-1 (NK-1) receptor antagonist, L-703,606 we further found that only early (within 15 min) treatment with L-703,606 produced a significant inhibition of the enhanced mechanically evoked NS neuron responses in BV-induced nociception, suggesting a dynamic function of NK-1 receptor involvement for deep spinal NS neuron mediated central sensitisation. We conclude that deep spinal DH NS neurons are strictly governed by tonic inhibitory descending controls. As this descending inhibitory control either is absent or decays, deep spinal NS neurons may play a crucial role in the development of central sensitisation in pathological nociception, for instance in spinal cord injury-induced pathological pain.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.