• Anesthesiology · Jan 2003

    Fentanyl decreases Ca2+ currents in a population of capsaicin-responsive sensory neurons.

    • Thomas S McDowell.
    • Department of Anesthesiology, University of Wisconsin Medical School, Madison, Wisconsin 53792-3272, USA. tsmcdowe@facstaff.wisc.edu
    • Anesthesiology. 2003 Jan 1; 98 (1): 223-31.

    BackgroundNeuraxial opioids produce analgesia in part by decreasing excitatory neurotransmitter release from primary nociceptive neurons, an effect that may be due to inhibition of presynaptic voltage-activated Ca2+ channels. The purpose of this study was to determine whether opioids decrease Ca2+ currents (I Ca ) in primary nociceptive neurons, identified by their response to the algogenic agent capsaicin.MethodsI was recorded from acutely isolated rat dorsal root ganglion neurons using the whole cell patch clamp technique before, during, and after application of the micro -opioid agonist fentanyl (0.01-1 micro m). Capsaicin was applied to each cell at the end of the experiment.ResultsFentanyl reduced I Ca in a greater proportion of capsaicin-responsive cells (62 of 106, 58%) than capsaicin-unresponsive cells (2 of 15, 13%; P < 0.05). Among capsaicin-responsive cells, the decrease in I Ca was 38 +/- 3% (n = 36, 1 micro m) in fentanyl-sensitive cells just 7 +/- 1% (n = 15, 1 micro m; P < 0.05) in fentanyl-insensitive cells. Among capsaicin-responsive cells, I Ca inactivated more rapidly in fentanyl-sensitive cells (tau, 52 +/- 4 ms, n = 22) than in fentanyl-insensitive cells (93 +/- 14 ms, n = 24; P < 0.05). This was not due to differences in the types of Ca2+ channels expressed as the magnitudes of omega-conotoxin GVIA-sensitive (N-type), nifedipine-sensitive (L-type), and GVIA/nifedipine-resistant (primarily P-/Q-type) components of I Ca were similar.ConclusionsThe results show that opioid-sensitive Ca2+ channels are expressed by very few capsaicin-unresponsive neurons but by more than half of capsaicin-responsive neurons. The identity of the remaining capsaicin-responsive (and therefore presumed nociceptive) neurons that express opioid-insensitive Ca2+ channels is unknown but may represent a potential target of future non-opioid-based therapies for acute pain.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.