• Neuroscience · Mar 2010

    Pilocarpine-induced status epilepticus causes acute interneuron loss and hyper-excitatory propagation in rat insular cortex.

    • S Chen, S Fujita, N Koshikawa, and M Kobayashi.
    • Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
    • Neuroscience. 2010 Mar 10; 166 (1): 341-53.

    AbstractRecent clinical studies have shown that the insular cortex (IC) is involved in temporal lobe epilepsy and suggested that the IC mediates spreading of epileptic activity from the temporal lobe, including the hippocampus and amygdala, to the frontal cortex. However, little is known about anatomical and physiological features of the IC in models of temporal lobe epilepsy. The present study evaluated the distribution pattern of GABAergic interneurons, especially parvalbumin (PV)- and somatostatin (SS)-immunopositive neurons, and excitatory propagation pattern in the IC of rats 4-7 days and 2 months after pilocarpine-induced status epilepticus (4-7 d and 2 m post-SE rats, respectively). The number of PV-immunopositive neuron profiles in the agranular IC (AI) significantly decreased by 24.6% and 41.5% in 7 d and 2 m post-SE rats, respectively. The dysgranular and granular IC (DI+GI) exhibited only 5.2% loss of PV-immunopositive neurons in 7 d post-SE rats, while 2 m post-SE rats showed 30.4% loss of PV-immunopositive neurons. There was no significant change of the SS-immunopositive neuron profile numbers in the AI and DI+GI of 7 d and 2 m post-SE rats. The regions with decreased numbers of PV-immunopositive neuron profiles overlapped with those where many degenerating cells were detected by Fluoro-Jade B staining. The area of excitatory propagation responding to electrical stimulation of the caudal AI was expanded in 4-7 d post-SE rats, and excitation frequently propagated to the frontal cortex including the motor cortex. Optical signals in the AI of 4-7 d post-SE rats were larger in amplitude than those of controls. In contrast to the AI, the DI of 4-7 d post-SE rats showed similar excitatory propagation pattern and amplitude to that of controls. These results suggest that the region-specific loss of PV-immunopositive neurons occurred in the AI 4-7 d after pilocarpine-induced status epilepticus, which may play an important role in facilitating excitatory propagation in the IC.Copyright 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…