• J. Neurophysiol. · Aug 1994

    Action potential propagation through embryonic dorsal root ganglion cells in culture. I. Influence of the cell morphology on propagation properties.

    • C Lüscher, J Streit, R Quadroni, and H R Lüscher.
    • Institute of Physiology, University of Berne, Switzerland.
    • J. Neurophysiol. 1994 Aug 1; 72 (2): 622-33.

    Abstract1. In this and the companion paper the reliability of action potential (AP) propagation through dorsal root ganglion (DRG) cells was investigated. Experimental data were collected from DRG cells of embryonic rat slice cultures of the spinal cord. A field stimulation electrode was used to elicit an AP in the axon. The propagated AP or, in case of conduction block, its electronic residue (ER), was measured intracellularly in the soma of the DRG cell. 2. The morphological and electrophysiological data combined with published data from voltage-clamp studies were taken to implement a compartmental computer model, which allows a precise description of the propagating AP and the channel kinetics at any point along the axon. 3. The safety factor for conduction was found to be low. Thus failures of AP invasion of the DRG cell soma could occur at sites of impedance mismatch when a hyperpolarizing current was applied, a second stimulus felt into the relative refractory period of the first, or when the axon was repetitively stimulated. 4. The ERs of the failed APs had discrete amplitude levels, suggesting that the failures were always caused at the same site along the axon. These sites of low safety factor were found to be the branch point in the unipolar DRG cell and the entrance of the stem piece into the soma in both cell types, the bipolar as well as the unipolar. 5. A systematic comparison of bipolar and unipolar DRG cells showed that the AP conduction through the latter is more reliable. For large cell bodies, the unipolar configuration is needed for save conduction. 6. Conduction through unipolar DRG cells is faster than through bipolar cells because the electrical load of the soma is masked by the high-resistive stem piece. The length of this stem piece is correlated inversely to the delay caused at the branch point, as the electrical load of the soma is more efficiently masked by a long stem piece.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.