• Circulation research · Aug 2001

    Acetylcholine, bradykinin, opioids, and phenylephrine, but not adenosine, trigger preconditioning by generating free radicals and opening mitochondrial K(ATP) channels.

    • M V Cohen, X M Yang, G S Liu, G Heusch, and J M Downey.
    • Department of Physiology, College of Medicine, University of South Alabama, Mobile, Alabama, USA. mcohen@usamail.usouthal.edu
    • Circ. Res. 2001 Aug 3; 89 (3): 273-8.

    AbstractIt has been assumed that all G(i)-coupled receptors trigger the protective action of preconditioning by means of an identical intracellular signaling pathway. To test this assumption, rabbit hearts were isolated and perfused with Krebs buffer. All hearts were subjected to a 30-minute coronary artery occlusion followed by 120 minutes of reperfusion. Risk area was measured with fluorescent particles and infarct size with triphenyltetrazolium chloride staining. Control hearts showed 29.1+/-2.8% infarction of the risk zone. A 5-minute infusion of acetylcholine (0.55 mmol/L) beginning 15 minutes before the 30-minute occlusion resulted in significant protection (9.2+/-2.7% infarction). This protection could be blocked by administration of 300 micromol/L N-2-mercaptopropionyl glycine (MPG), a free radical scavenger, or by 200 micromol/L 5-hydroxydecanoate (5-HD), a mitochondrial K(ATP) antagonist, for 15 minutes beginning 5 minutes before the acetylcholine infusion (35.2+/-3.9% and 27.8+/-2.4% infarction, respectively). Similar protection was observed with other known triggers, ie, bradykinin (0.4 micromol/L), morphine (0.3 micromol/L), and phenylephrine (0.1 micromol/L), and in each case protection was completely abrogated by either MPG or 5-HD. In contrast, protection by adenosine or its analog N(6)-(2-phenylisopropyl) adenosine could not be blocked by either MPG or 5-HD. Therefore, whereas most of the tested agonists trigger protection by a pathway that requires opening of mitochondrial K(ATP) channels and production of free radicals, the protective action of adenosine is not dependent on either of these steps. Hence, it cannot be assumed that all G(i)-coupled receptors use the same signal transduction pathways to trigger preconditioning.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.