• Am. J. Respir. Crit. Care Med. · Nov 2016

    Circulating Plasma Extracellular Microvesicle miRNA Cargo and Endothelial Dysfunction in OSA Children.

    • Abdelnaby Khalyfa, Leila Kheirandish-Gozal, Ahamed A Khalyfa, Mona F Philby, María Luz Alonso-Álvarez, Meelad Mohammadi, Rakesh Bhattacharjee, Joaquin Terán-Santos, Lei Huang, Jorge Andrade, and David Gozal.
    • 1 Section of Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, and.
    • Am. J. Respir. Crit. Care Med. 2016 Nov 1; 194 (9): 1116-1126.

    RationaleObese children are at increased risk for developing obstructive sleep apnea (OSA), and both of these conditions are associated with an increased risk for endothelial dysfunction (ED) in children, an early risk factor for atherosclerosis and cardiovascular disease. Although weight loss and treatment of OSA by adenotonsillectomy improve endothelial function, not every obese child or child with OSA develops ED. Exosomes are circulating extracellular vesicles containing functional mRNA and microRNA (miRNA) that can be delivered to other cells, such as endothelial cells.ObjectivesTo investigate whether circulating exosomal miRNAs of children with OSA differentiate based on endothelial functional status.MethodsObese children (body mass index z score >1.65) and nonobese children were recruited and underwent polysomnographic testing (PSG), and fasting endothelial function measurements and blood draws in the morning after PSG. Plasma exosomes were isolated from all subjects. Isolated exosomes were then incubated with confluent endothelial cell monolayer cultures. Electric cell-substrate impedance sensing systems were used to determine the ability of exosomes to disrupt the intercellular barrier formed by confluent endothelial cells. In addition, immunofluorescent assessments of zonula occludens-1 tight junction protein cellular distribution were conducted to examine endothelial barrier dysfunction. miRNA and mRNA arrays were also applied to exosomes and endothelial cells, and miRNA inhibitors and mimics were transfected for mechanistic assays.Measurements And Main ResultsPlasma exosomes isolated from either obese children or nonobese children with OSA were primarily derived from endothelial cell sources and recapitulated ED, or its absence, in naive human endothelial cells and also in vivo when injected into mice. Microarrays identified a restricted signature of exosomal miRNAs that readily distinguished ED from normal endothelial function. Among the miRNAs, expression of exosomal miRNA-630 was reduced in children with ED and normalized after therapy along with restoration of endothelial function. Conversely, transfection of exosomes from subjects without ED with an miRNA-630 inhibitor induces the ED functional phenotype. Gene target discovery experiments further revealed that miRNA-630 regulates 416 gene targets in endothelial cells that include the Nrf2, AMP kinase, and tight junction pathways.ConclusionsThese observations elucidate a novel role of exosomal miRNA-360 as a putative key mediator of vascular function and cardiovascular disease risk in children with underlying OSA and/or obesity, and identify therapeutic targets.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.