-
AJR Am J Roentgenol · Nov 2000
Comparative StudyAutomatic detection and quantification of ground-glass opacities on high-resolution CT using multiple neural networks: comparison with a density mask.
- H U Kauczor, K Heitmann, C P Heussel, D Marwede, T Uthmann, and M Thelen.
- Department of Radiology, Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany.
- AJR Am J Roentgenol. 2000 Nov 1; 175 (5): 1329-34.
ObjectiveWe compared multiple neural networks with a density mask for the automatic detection and quantification of ground-glass opacities on high-resolution CT under clinical conditions.Subjects And MethodsEighty-four patients (54 men and 30 women; age range, 18-82 years; mean age, 49 years) with a total of 99 consecutive high-resolution CT scans were enrolled in the study. The neural network was designed to detect ground-glass opacities with high sensitivity and to omit air-tissue interfaces to increase specificity. The results of the neural network were compared with those of a density mask (thresholds, -750/-300 H), with a radiologist serving as the gold standard.ResultsThe neural network classified 6% of the total lung area as ground-glass opacities. The density mask failed to detect 1.3%, and this percentage represented the increase in sensitivity that was achieved by the neural network. The density mask identified another 17.3% of the total lung area to be ground-glass opacities that were not detected by the neural network. This area represented the increase in specificity achieved by the neural network. Related to the extent of the ground-glass opacities as classified by the radiologist, the neural network (density mask) reached a sensitivity of 99% (89%), specificity of 83% (55%), positive predictive value of 78% (18%), negative predictive value of 99% (98%), and accuracy of 89% (58%).ConclusionAutomatic segmentation and quantification of ground-glass opacities on high-resolution CT by a neural network are sufficiently accurate to be implemented for the preinterpretation of images in a clinical environment; it is superior to a double-threshold density mask.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.