• Injury · Apr 2015

    The effect of traumatic brain injury on bone healing: an experimental study in a novel in vivo animal model.

    • Serafeim Tsitsilonis, Ricarda Seemann, Martin Misch, Florian Wichlas, Norbert P Haas, Katharina Schmidt-Bleek, Christian Kleber, and Klaus-Dieter Schaser.
    • Center for Musculoskeletal Surgery, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies, Augustenburger Platz 1, 13353 Berlin, Germany. Electronic address: serafeim.tsitsilonis@charite.de.
    • Injury. 2015 Apr 1;46(4):661-5.

    IntroductionAmong many factors determining the outcome of complex fractures in polytrauma patients, the role of traumatic brain injury (TBI) remains only partly understood. The aim of the present study was to examine the effect of traumatic brain injury on bone healing through the establishment of a novel standardised animal model that sequentially combines traumatic brain injury (TBI) with a long bone injury.Materials And MethodsThirty-six female twelve-week old C57/BL6 mice were randomised in two groups (fracture (Fx)-group and combined-trauma (Fx/TBI) group). The methods of the Control Cortical Impact Injury for induction of TBI and of the femoral osteotomy, fixed with an external fixator for the simulation of the long bone fracture, were combined. No TBI was induced in the Fx-group. Bone healing was examined using in vivo micro-CT measurements over a period of three weeks.ResultsThe severity of the TBI was sufficient to stimulate a significantly increased callus formation in the Fx/TBI-group with an acceptable mortality rate. The micro-CT analysis of fracture healing displayed a significantly increased callus volume in the Fx/TBI-group already from the second postoperative week. This difference remained significant throughout the entire study period.DiscussionThe successful and standardised combination of TBI and fracture in a mouse model allows systematic and quantitative in vivo analysis of underlying pathways that trigger the mutual interaction between musculoskeletal trauma and brain injury, as well as, corresponding differences in fracture healing using micro-CT methods.ConclusionThe present study offers three new aspects: a standardised model for combined injury of TBI and femoral osteotomy; direct and serial in vivo imaging and quantification of fracture healing response using micro-CT; testing of potentially beneficial therapeutic regimens for fracture treatment in presence of TBI. Thus this model provides a valuable basic approach for the study of the amplifying effect of TBI on callus formation seen in patients with craniocerebral injury and concomitant skeletal trauma.Copyright © 2015 Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.