• Clin Neurol Neurosurg · Mar 2016

    Geometry of inferior endplates of the cervical spine.

    • Jigang Lou, Hao Liu, Xin Rong, Huibo Li, Beiyu Wang, and Quan Gong.
    • Department of Orthopedics, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu, Sichuan 610041, China.
    • Clin Neurol Neurosurg. 2016 Mar 1; 142: 132-136.

    ObjectivesDevice subsidence is a well-known complication following cervical disc arthroplasty. Its occurrence has been closely tied with the endplate-implant contact interface. But current literature on the geometry of cervical endplate is very scarce. The aim of this anatomical investigation was to analyze geometry of inferior endplates of the cervical vertebrae, thereby identifying the common endplate shape patterns and providing morphological reference values consummating the design of the implant.Patients And MethodsReformatted CT scans of 85 individuals were analyzed and endplate concave depth, endplate concave apex location, sagittal diameter of endplate, coronal concave angle, as well as transverse diameter of endplate were measured in mid-sagittal plane and specified coronal plane. According to the endplate concave apex location, the inferior endplates in mid-sagittal plane were classified into 3 types: type I with posteriorly positioned apex, type II with middle situated concave apex and type III with anteriorly positioned apex. Moreover, the inferior endplates in specified coronal plane were also classified into three types: concave, flat and irregular.ResultsBased on visual assessment, for the mid-sagittal plane, type I endplate accounted for 26.9% of all the 510 endplates of 85 individuals, while the proportion of type II and type III endplates were 53.9 and 19.2% respectively. For the specified coronal plane, 68.6% of all the 510 endplates were evaluated as concave, 26.9% as flat and the remaining 4.5% as irregular. Among all measured segments, C3 had the largest endplate concave depth values in mid-sagittal plane, while C7 the least; C5 and C6 had the largest sagittal endplate diameter values, while C2 the least. For each level, the sagittal endplate concave depth and endplate diameter of females were significantly smaller than those of males (P<0.05). Among all measured segments, C7 had the least coronal concave angle. Gender did not influence coronal concave angle significantly (P>0.05). Increasing from C2 to C7, the endplate transverse diameters of females were significantly smaller than those of males (P<0.05).ConclusionThe exact shape and geometry of cervical endplate are crucial for the design and improvement of cervical disc prosthesis. Gender difference of sagittal and transverse diameters of cervical endplate should be given more attention when implanting a disc prosthesis. These endplate geometrical parameters should be taken into consideration when calculating most suitable geometric parameters of new disc prosthesis.Copyright © 2016 Elsevier B.V. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…