-
Ieee T Inf Technol B · Mar 2000
Schemes for the identification of tissue types and boundaries at the tool point for surgical needles.
- P N Brett, A J Harrison, and T A Thomas.
- Department of Mechanical Engineering, University of Bristol, UK.
- Ieee T Inf Technol B. 2000 Mar 1; 4 (1): 30-6.
AbstractPrecise control of automated invasive surgical tools requires real-time identification of tissue types and their deformation. At the focus of this paper is the epidural puncture, for which it is shown that the tissue type and deformation can respectively be determined from laser-based spectroscopy and the change in force required to push the needle through the various tissues. Studies have shown that physiological variations from one patient to another are too great to allow absolute values to be reliably used to indicate the position of the needle tip. However, the pattern of force variation during penetration is shown to be similar between specimens. Interpretation of this information in conjunction with spectroscopic techniques can be used to discriminate between tissues and tissue structure at the needle tip. This paper describes results from an investigation on automatic techniques for interpreting the type and deformation of tissues under tool action.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.