• J. Neurophysiol. · Dec 2012

    Lateralization in intrinsic functional connectivity of the temporoparietal junction with salience- and attention-related brain networks.

    • Aaron Kucyi, Mojgan Hodaie, and Karen D Davis.
    • Division of Brain, Imaging and Behaviour–Systems Neuroscience, Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada.
    • J. Neurophysiol. 2012 Dec 1; 108 (12): 3382-92.

    AbstractNeuroimaging studies have demonstrated that the right temporoparietal junction (TPJ) is activated during detection of salient stimuli, including pain, in the sensory environment. Right TPJ damage more often produces spatial neglect than left TPJ damage. We recently reported a right lateralized system of white matter connectivity of the TPJ. However, lateralization in intrinsic TPJ functional connectivity during a task/stimuli-independent state has not been fully characterized. Here we used resting-state functional MRI in healthy humans to compare the functional connectivity of right and left TPJ with salience- and attention-related brain networks. Independent components analysis revealed that both right and left TPJ were functionally connected with a network that included the anterior insula, dorsolateral prefrontal cortex (PFC), and mid-cingulate cortex, considered to be the salience/ventral attention network. Dual regression revealed this network was more strongly connected with right TPJ than left TPJ. Seed-based functional connectivity analysis showed 1) negative connectivity the TPJ bilaterally with the "default mode network"; 2) positive connectivity of TPJ bilaterally with the salience/ventral attention network; 3) stronger connectivity between right TPJ compared with left TPJ with regions within the salience/ventral attention network and mid-insula, S2, and temporal/parietal opercula (implicated in pain); and 4) stronger connectivity of left TPJ compared with right TPJ with the "executive control network," including the dorsomedial/medial PFC, inferior frontal gyrus, and cerebellum (crus I/II). Our findings build on classic lesion and neuroimaging studies, demonstrating a complex spatial network organization of lateralization in TPJ functional connectivity in the absence of an overt stimulus.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…