• J. Neurophysiol. · Aug 1989

    The correlation of monkey medullary dorsal horn neuronal activity and the perceived intensity of noxious heat stimuli.

    • R Dubner, D R Kenshalo, W Maixner, M C Bushnell, and J L Oliveras.
    • Neurobiology and Anesthesiology Branch, National Institute of Dental Research, Bethesda, Maryland 20892.
    • J. Neurophysiol. 1989 Aug 1; 62 (2): 450-7.

    Abstract1. We examined the relationship between the activity of medullary dorsal horn nociceptive neurons and the monkeys' ability to detect noxious heat stimuli. In two different detection tasks, the temperature of a contact thermode positioned on the monkey's face increased from 38 degrees C to temperatures between 44 and 48 degrees C (T1). After a variable time period, the thermode temperature increased an additional 0.2-1.5 degrees C (T2), and the monkeys' detection speed from the onset of T2 was determined. We previously have established that detection speed is a measure of the perceived intensity of noxious thermal stimuli. Nociceptive neurons were classified as wide-dynamic-range (WDR, responsive to innocuous mechanical stimuli with greater responses to noxious mechanical stimuli) and nociceptive-specific (NS, responsive only to noxious stimuli). WDR neurons were subclassified as WDR1 and WDR2 based on the higher slope values of the stimulus-response functions of WDR1 neurons. The monkeys were trained to detect small increases in noxious heat, and their detection speeds were correlated with the responses of WDR1, WDR2, and NS neurons. 2. Detection speeds to T2 temperatures of 1.0 degrees C from preceding T1 temperatures of 45 and 46 degrees C were faster during a preceding ascending series of stimuli than during a descending series. Similarly, the peak discharge frequencies of WDR1 neurons in response to the same stimuli were greater during the ascending series of T2 temperatures. In contrast, the responses of WDR2 and NS neurons showed no significant differences during the ascending and descending series of stimuli. 3. Detection speeds following 0.4, 0.6, and 0.8 degrees C T2 stimuli were higher when the preceding T1 temperature was 46 degrees C as compared with detection speeds to the identical stimuli when the preceding T1 temperature was 45 degrees C. WDR1 neurons also exhibited a significant increase in peak discharge frequency to these same T2 stimuli when the preceding T1 temperature was 46 degrees C. In contrast, the neuronal activity of WDR2 and NS neurons did not differ on 45 and 46 degrees C T1 trials. 4. The relationship between detection speed and neuronal peak discharge frequency was examined in response to different pairs of T1 and T2 stimuli when T1 was either 45 or 46 degrees C. There was a significant correlation between detection speed and neuronal discharge for WDR1 and WDR2 neurons. No correlation was observed for NS neurons. 5. The magnitude of neuronal activity on correctly detected and nondetected trials was compared when T1 was 46 degrees C and T2 was 0.2 degree C.(ABSTRACT TRUNCATED AT 400 WORDS)

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.