• Am. J. Physiol. · May 1998

    Interaction among autoregulation, CO2 reactivity, and intracranial pressure: a mathematical model.

    • M Ursino and C A Lodi.
    • Department of Electronics, Computer Science and Systems, University of Bologna, Italy.
    • Am. J. Physiol. 1998 May 1; 274 (5 Pt 2): H1715-28.

    AbstractThe relationships among cerebral blood flow, cerebral blood volume, intracranial pressure (ICP), and the action of cerebrovascular regulatory mechanisms (autoregulation and CO2 reactivity) were investigated by means of a mathematical model. The model incorporates the cerebrospinal fluid (CSF) circulation, the intracranial pressure-volume relationship, and cerebral hemodynamics. The latter is based on the following main assumptions: the middle cerebral arteries behave passively following transmural pressure changes; the pial arterial circulation includes two segments (large and small pial arteries) subject to different autoregulation mechanisms; and the venous cerebrovascular bed behaves as a Starling resistor. A new aspect of the model exists in the description of CO2 reactivity in the pial arterial circulation and in the analysis of its nonlinear interaction with autoregulation. Simulation results, obtained at constant ICP using various combinations of mean arterial pressure and CO2 pressure, substantially support data on cerebral blood flow and velocity reported in the physiological literature concerning both the separate effects of CO2 and autoregulation and their nonlinear interaction. Simulations performed in dynamic conditions with varying ICP underline the existence of a significant correlation between ICP dynamics and cerebral hemodynamics in response to CO2 changes. This correlation may significantly increase in pathological subjects with poor intracranial compliance and reduced CSF outflow. In perspective, the model can be used to study ICP and blood velocity time patterns in neurosurgical patients in order to gain a deeper insight into the pathophysiological mechanisms leading to intracranial hypertension and secondary brain damage.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…