-
Am. J. Respir. Crit. Care Med. · Jul 2015
CARMA3 Represses Metastasis-Suppressor NME2 to Promote Lung Cancer Stemness and Metastasis.
- Yi-Wen Chang, Ching-Feng Chiu, Kang-Yun Lee, Chih-Chen Hong, Yi-Yun Wang, Ching-Chia Cheng, Yi-Hua Jan, Ming-Shyan Huang, Michael Hsiao, Jui-Ti Ma, and Jen-Liang Su.
- 1 National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan.
- Am. J. Respir. Crit. Care Med. 2015 Jul 1;192(1):64-75.
RationaleCARD-recruited membrane-associated protein 3 (CARMA3) is a novel scaffold protein that regulates nuclear factor (NF)-κB activation; however, the underlying mechanism of CARMA3 in lung cancer stemness and metastasis remains largely unknown.ObjectivesTo investigate the molecular mechanisms underlying the involvement of CARMA3 in non-small cell lung cancer progression.MethodsThe expression levels of CARMA3 and NME2 in a cohort of patients with lung cancer (n = 91) were examined by immunohistochemistry staining and assessed by Kaplan-Meier survival analysis. The effects of CARMA3, microRNA-182 (miR-182), and NME2 on cancer stemness and metastasis were measured in vitro and in vivo. Chromatin immunoprecipitation and luciferase reporter assays were performed to determine the mechanisms of NF-κB-driven miR-182 expression and NME2 regulation.Measurements And Main ResultsWe observed that CARMA3 inversely correlated with NME2 expression in patients with lung cancer (Pearson correlation coefficient: R = -0.24; P = 0.022). NME2 levels were significantly decreased in tumor tissues compared with adjacent normal lung tissues (P < 0.001), and patients with lung cancer with higher levels of NME2 had longer survival outcomes (overall survival, P < 0.01; disease-free survival, P < 0.01). Mechanistically, CARMA3 promoted cell motility by reducing the level of NME2 through the NF-κB/miR-182 pathway and by increasing cancer stem cell properties and metastasis in lung cancer.ConclusionsWe identified a novel mechanism of CARMA3 in lung cancer stemness and metastasis through the negative regulation of NME2 by NF-κB-dependent induction of miR-182. Our findings provide an attractive strategy for targeting the CARMA3/NF-κB/miR-182 pathway as a potential treatment for lung cancer.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.