• Journal of neurotrauma · Jan 2016

    Traumatic Brain Injury Impairs SNARE Complex Formation and Alters Synaptic Vesicle Distribution in the Hippocampus.

    • Shaun W Carlson, Hong Yan, Michelle Ma, Youming Li, Jeremy Henchir, and C Edward Dixon.
    • Department of Neurosurgery, Safar Center for Resuscitation Research, University of Pittsburgh , Pittsburgh, Pennsylvania.
    • J. Neurotrauma. 2016 Jan 1; 33 (1): 113-21.

    AbstractTraumatic brain injury (TBI) impairs neuronal function and can culminate in lasting cognitive impairment. While impaired neurotransmitter release has been well established after experimental TBI, little is understood about the mechanisms underlying this consequence. In the synapse, vesicular docking and neurotransmitter release requires the formation of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex. Impairments in vesicle docking, and alterations in SNARE complex formation are associated with impaired neurotransmitter release. We hypothesized that TBI reduces SNARE complex formation and disrupts synaptic vesicle distribution in the hippocampus. To examine the effect of TBI on the SNARE complex, rats were subjected to controlled cortical impact (CCI) or sham injury, and the brains were assessed at 6 h, 1 d, one week, two weeks, or four weeks post-injury. Immunoblotting of hippocampal homogenates revealed significantly reduced SNARE complex formation at one week and two weeks post-injury. To assess synaptic vesicles distribution, rats received CCI or sham injury and the brains were processed for transmission electron microscopy at one week post-injury. Synapses in the hippocampus were imaged at 100k magnification, and vesicle distribution was assessed in pre-synaptic terminals at the active zone. CCI resulted in a significant reduction in vesicle number within 150 nm of the active zone. These findings provide the first evidence of TBI-induced impairments in synaptic vesicle docking, and suggest that reductions in the pool of readily releasable vesicles and impaired SNARE complex formation are two novel mechanisms contributing to impaired neurotransmission after TBI.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…