• Physiological measurement · Aug 2001

    A new mathematical model of dynamic cerebral autoregulation based on a flow dependent feedback mechanism.

    • S K Kirkham, R E Craine, and A A Birch.
    • Faculty of Mathematical Studies, University of Southampton, Highfield, UK. s.k.kirkham@maths.soton.ac.uk
    • Physiol Meas. 2001 Aug 1; 22 (3): 461-73.

    AbstractA new mathematical model representing dynamic cerebral autoregulation as a flow dependent feedback mechanism is presented. Two modelling parameters are introduced, lambda, the rate of restoration, and tau, a time delay. Velocity profiles are found for a general arterial blood pressure, allowing the model to be applied to any experiment that uses changes in arterial blood pressure to assess dynamic cerebral autoregulation. Two such techniques, thigh cuffs and a lower body negative pressure box, which produce step changes and oscillatory variations in arterial blood pressure respectively, are investigated. Results derived using the mathematical model are compared with data from the two experiments. The comparisons yield similar estimates for lambda and tau, suggesting these parameters are independent of the pressure change stimulus and depend only on the main features of the dynamic cerebral autoregulation process. The modelling also indicates that for imposed oscillatory variations in arterial blood pressure a small phase difference between pressure and velocity waveforms does not necessarily imply impaired autoregulation. It is shown that the ratio between the variation in maximum velocity and pressure variation can be used, along with the phase difference, to indicate the nature of the autoregulatory response.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.