• Acta Pharmacol. Sin. · Mar 2008

    Agonist-induced hump current production in heterologously-expressed human alpha4beta2-nicotinic acetylcholine receptors.

    • Qiang Liu, Ke-wei Yu, Yong-chang Chang, Ronald J Lukas, and Jie Wu.
    • Divisions of Neurology, Barrow Neurological Institute, St Josephos Hospital and Medical Center, Phoenix, Arizona 85013-4496, USA.
    • Acta Pharmacol. Sin. 2008 Mar 1; 29 (3): 305-19.

    AimTo characterize the functional and pharmacological features of agonist-induced hump currents in human alpha4beta2-nicotinic acetylcholine receptors (nAChR).MethodsWhole-cell and outside-out patch recordings were performed using human alpha4beta2-nAChR heterologously expressed in stably-transfected, native nAChR-null subclonal human epithelial 1 (SH-EP1) cells. RT-PCR was used to test the mRNA expression of transfected nAChR. Homology modeling and acetylcholine (ACh) docking were applied to show the possible ACh-binding site in the channel pore.ResultsThe rapid exposure of 10 mmol/L ACh induced an inward current with a decline from peak to steady-state. However, after the removal of ACh, an additional inward current, called phumpq current, reoccurred. The ability of agonists to produce these hump currents cannot be easily explained based on drug size, charge, acute potency, or actions as full or partial agonists. Hump currents were associated with a rebound increase in whole-cell conductance, and they had voltage dependence-like peak currents induced by agonist action. Hump currents blocked by the alpha4beta2-nAChR antagonist dihydro-beta-erythroidine were reduced when alpha4beta2-nAChR were desensitized, and were more pronounced in the absence of external Ca2+. Outside-out single-channel recordings demonstrated that compared to 1 micromol/L nicotine, 100 micromol/L nicotine reduced channel current amplitude, shortened the channel mean open time, and prolonged the channel mean closed time, supporting an agonist-induced open-channel block before hump current production. A docking model also simulated the agonist-binding site in the channel pore.ConclusionThese results support the hypothesis that hump currents reflect a rapid release of agonists from the alpha4beta2-nAChR channel pore and a rapid recovery from desensitized alpha4beta2-nAChR.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.