• Eur. J. Nucl. Med. Mol. Imaging · Sep 2004

    Comparative Study Clinical Trial Controlled Clinical Trial

    Positron emission tomography imaging of adrenal masses: (18)F-fluorodeoxyglucose and the 11beta-hydroxylase tracer (11)C-metomidate.

    • Georg Zettinig, Markus Mitterhauser, Wolfgang Wadsak, Alexander Becherer, Christian Pirich, Heinrich Vierhapper, Bruno Niederle, Robert Dudczak, and Kurt Kletter.
    • Department of Nuclear Medicine, University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria, georg.zettinig@meduniwien.ac.at
    • Eur. J. Nucl. Med. Mol. Imaging. 2004 Sep 1; 31 (9): 1224-30.

    Purpose(11)C-metomidate (MTO), a marker of 11beta-hydroxylase, has been suggested as a novel positron emission tomography (PET) tracer for adrenocortical imaging. Up to now, experience with this very new tracer is limited. The aims of this study were (1) to evaluate this novel tracer, (2) to point out possible advantages in comparison with( 18)F-fluorodeoxyglucose (FDG) and (3) to investigate in vivo the expression of 11beta-hydroxylase in patients with primary aldosteronism.MethodsSixteen patients with adrenal masses were investigated using both MTO and FDG PET imaging. All patients except one were operated on. Five patients had non-functioning adrenal masses, while 11 had functioning tumours(Cushing's syndrome, n=4; Conn's syndrome, n=5; phaeochromocytoma, n=2). Thirteen patients had benign disease, whereas in three cases the adrenal mass was malignant (adrenocortical cancer, n=1; malignant phaeochromocytoma, n=1; adrenal metastasis of renal cancer, n=1).ResultsMTO imaging clearly distinguished cortical from non-cortical adrenal masses (median standardised uptake values of 18.6 and 1.9, respectively, p<0.01). MTO uptake was slightly lower in patients with Cushing's syndrome than in those with Conn's syndrome, but the difference did not reach statistical significance. The expression of 11beta-hydroxylase was not suppressed in the contralateral gland of patients with Conn's syndrome, whereas in Cushing's syndrome this was clearly the case. The single patient with adrenocortical carcinoma had MTO uptake in the lower range.ConclusionMTO could not definitely distinguish between benign and malignant disease. FDG PET, however, identified clearly all three study patients with malignant adrenal lesions. We conclude: (1) MTO is an excellent imaging tool to distinguish adrenocortical and non-cortical lesions; (2) the in vivo expression of 11beta-hydroxylase is lower in Cushing's syndrome than in Conn's syndrome, and there is no suppression of the contralateral gland in primary aldosteronism; (3) for the purpose of discriminating between benign and malignant lesions, FDG is the tracer of choice.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…