• Methods Mol. Biol. · Jan 2014

    In vitro models of the blood-brain barrier.

    • Cathrin J Czupalla, Stefan Liebner, and Kavi Devraj.
    • Institute of Neurology (Edinger Institute), Johann Wolfgang Goethe-University Frankfurt Medical School, Frankfurt, Germany.
    • Methods Mol. Biol. 2014 Jan 1; 1135: 415-37.

    AbstractThe blood-brain barrier (BBB) proper is composed of endothelial cells (ECs) of the cerebral microvasculature, which are interconnected by tight junctions (TJs) that in turn form a physical barrier restricting paracellular flux. Tight control of vascular permeability is essential for the homeostasis and functionality of the central nervous system (CNS). In vitro BBB models have been in use for decades and have been of great benefit in the process of investigating and understanding the cellular and molecular mechanisms underlying BBB establishment. BBB integrity changes can be addressed in vitro by determining cell monolayer permeability (Pe) to different solutes and measuring trans-endothelial electrical resistance (TEER).This chapter describes procedures that can be utilized for both freshly isolated mouse brain microvascular ECs (MBMECs) and murine or human brain EC lines (bEnd5 or hCMEC/D3), cultivated either as a single monolayer or in cocultivation with primary mouse astrocytes (ACs). It starts with detailed information on how to perform transwell cell culture, including coating of inserts and seeding of the ECs and ACs. Moreover, it encompasses instructions for electrical assessment of the in vitro BBB using the more recent cellZscope(®) device, which was traditionally performed with chopstick electrodes of voltohmmeter type (EVOM). From continuous impedance measurements, the cellZscope(®) device provides TEER (paracellular resistance) and cell membrane capacitance (Ccl-transcellular resistance), two independent measures of monolayer integrity. Additionally, this chapter provides guidance through subsequent experiments such as permeability analysis (Pe, flux), expression analysis (qRT-PCR and Western blotting), and localization analysis of BBB junction proteins (immunocytochemistry) using the same inserts subjected earlier to impedance analysis.As numerous diseases are associated with BBB breakdown, researchers aim to continuously improve and refine in vitro BBB models to mimic in vivo conditions as closely as possible. This chapter summarizes protocols with the intention to provide a collection of BBB in vitro assays that generate reproducible results not only with primary brain ECs but also with EC lines to open up the field for a broader spectrum of researchers who intend to investigate the BBB in vitro particularly aiming at therapeutic aspects.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.