• J Clin Monit Comput · Jun 2016

    Automated gas control with the Maquet FLOW-i.

    • Rik Carette, Andre M De Wolf, and Jan F A Hendrickx.
    • Department of Anesthesiology, Intensive Care and Pain Therapy, OLV Hospital, Moorselbaan 164, 9300, Aalst, Belgium.
    • J Clin Monit Comput. 2016 Jun 1; 30 (3): 341-6.

    AbstractThe FLOW-i anesthesia machine (Maquet, Solna, Sweden) can be equipped with automated gas control (AGC), an automated low flow tool with target control of the inspired oxygen concentration (FIO2) and end-expired concentration (FA) of a potent inhaled anesthetic. We examined the performance and quantitative aspects of the AGC. After IRB approval and individual informed consent, anesthesia in 24 ASA I-II patients undergoing abdominal or gynecological surgery was maintained with sevoflurane in O2/air with a target FIO2 of 40 % and a target sevoflurane FA (FAsevo) of 2.0 %. The AGC tool also allows the user to select 1 out of 9 different speeds with which the target FAsevo can be reached (with 9 being the fastest speed). Eight patients each were randomly assigned to speed 2, 4, and 6 (= group 2, group 4, and group 6, respectively); these three speeds were chosen arbitrarily. AGC was activated immediately after securing the airway, which defined the start of the study, and the study ended 60 min later. The following parameters were compared among the three groups: age, height, weight, FIO2, FAsevo, BIS values, heart rate, mean arterial blood pressure, fresh gas flow, and sevoflurane usage. Agent usage as reported by the FLOW-i was compared among the three groups. Patient demographics and maintenance FGF did not differ among groups. A very short-lived very high FGF (≈20 L min(-1) for 8-12 s) ensured that the target FIO2 was attained within 1-2 min in all patients. FAsevo was 1.8 % after 15, 10, and 6 min, and 1.9 % after 30, 20 and 15 min in groups 2, 4, and 6, respectively. Blood pressure, heart rate, and BIS values did not differ among the three groups. BIS values remained acceptable in all patients, even with the slowest speed. Cumulative agent usage differed among all three groups between 2 and 30 min (lower with the lower speed), and between group 2 and 6 between 35 and 60 min. AGC combines an exponentially decreasing FGF pattern with a choice of ramp functions for the end-expired target concentration of the inhaled anesthetic. Consequently, both FGF and the choice of speed become factors that influence agent usage. After 15 min, a 300 mL min(-1) maintenance FGF reduces agent usage to near closed-circuit conditions. This new addition to our automated low flow armamentarium helps to reduce anesthetic waste, cost, and pollution, while minimizing the ergonomic burden of low flow anesthesia.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.