-
Clin. Exp. Pharmacol. Physiol. · Jan 2008
Hyperoxia confers myocardial protection in mechanically ventilated rats through the generation of free radicals and opening of mitochondrial ATP-sensitive potassium channels.
- Giuseppe Colantuono, Edy Altea Tiravanti, Nicola Di Venosa, Antonia Cazzato, Raffaella Rastaldo, Raffaele Cagiano, Donato D'Agostino, Antonio Federici, and Tommaso Fiore.
- Department of Emergency and Transplants, Section of Anaesthesia and Critical Care, University of Bari, Bari, Italy.
- Clin. Exp. Pharmacol. Physiol. 2008 Jan 1; 35 (1): 64-71.
Abstract1. One hour exposure to hyperoxia has been shown previously to limit a subsequent ischaemia-reperfusion injury in spontaneously breathing rats. We tested the cardioprotective effect of a shorter period of hyperoxia during mechanical ventilation and the possible contribution of reactive oxygen species (ROS) and mitochondrial ATP-sensitive potassium (mitoK(ATP)) channels. 2. Mechanically ventilated rats were exposed to normoxia (Fi O2 = 0.3) or hyperoxia (Fi O2 = 1.0) for 30 min and pH, P CO2, PO2, heart rate, airway and blood pressure were measured at baseline and after 30 min mechanical ventilation. Isolated hearts were subsequently subjected to 30 min ischaemia and 120 min reperfusion. Infarct size and left ventricular end-diastolic pressure (LVEDP), developed pressure (LVDP) and coronary flow (CF) were measured. In order to investigate the role of ROS and KATP channels within the mechanism leading to cardioprotection, the free radical scavenger N-acetylcysteine (NAC; 150 mg/kg) was infused in mechanically ventilated rats and the KATP channel blockers glibenclamide (200 mmol/L) or 5-hydroxydecanoate (10 mmol/L) were infused in isolated hearts immediately before ischaemia. 3. No differences were detected in P CO2, pH, heart rate, airway and blood pressure between the groups. However, the PO2 in hyperoxic groups was significantly higher compared with that in normoxic groups (P < 0.01). After 30 min ischaemia, we found that hyperoxic preconditioning significantly improved CF (P < 0.01), LVDP (P < 0.01) and LVEDP (P < 0.01) and reduced the extent of infarct size in the reperfused heart compared with the normoxic group (P < 0.01). When rats were pretreated either with NAC before hyperoxic ventilation or with K(ATP) channel blockers before ischaemia, myocardial protection was abolished. 4. Hyperoxic mechanical ventilation, prior to ischaemia, reduces myocardial reperfusion injury. This is likely to occur through the induction of oxidative stress, which leads to myocyte mitoKATP channel opening.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.