• Chest · Feb 2016

    Effective Bronchoscopic Lung Volume Reduction Accelerates Exercise Oxygen Uptake Kinetics in Emphysema.

    • Azmy Faisal, Zaid Zoumot, Pallav L Shah, J Alberto Neder, Michael I Polkey, and Nicholas S Hopkinson.
    • Faculty of Physical Education for Men, Alexandria University, Alexandria, Egypt.
    • Chest. 2016 Feb 1; 149 (2): 435-446.

    BackgroundThe impact of bronchoscopic lung volume reduction (BLVR) on physiologic responses to exercise in patients with advanced emphysema remains incompletely understood. We hypothesized that effective BLVR (e-BLVR), defined as a reduction in residual volume > 350 mL, would improve cardiovascular responses to exercise and accelerate oxygen uptake (Vo₂) kinetics.MethodsThirty-one patients (FEV1, 36% ± 9% predicted; residual volume, 219% ± 57% predicted) underwent a constant intensity exercise test at 70% peak work rate to the limit of tolerance before and after treatment bronchoscopy (n = 24) or sham bronchoscopy (n = 7). Physiologic responses in patients who had e-BLVR (n = 16) were compared with control subjects (ineffective BLVR or sham bronchoscopy; n = 15).Resultse-BLVR reduced residual volume (-1.1 ± 0.5 L, P = .001), improved lung diffusing capacity by 12% ± 13% (P = .001), and increased exercise tolerance by 181 ± 214 s (P = .004). Vo₂ kinetics were accelerated in the e-BLVR group but remained unchanged in control subjects (Δ mean response time, -20% ± 29% vs 1% ± 25%, P = .04). Acceleration of Vo₂ kinetics was associated with reductions in heart rate and oxygen pulse response half-times by 8% (84 ± 14 to 76 ± 15 s, P = .04) and 20% (49 ± 16 to 34 ± 16 s, P = .01), respectively. There were also increases in heart rate and oxygen pulse amplitudes during the cardiodynamic phase post e-BLVR. Faster Vo₂ kinetics in the e-BLVR group were significantly correlated with reductions in residual volume (r = 0.66, P = .005) and improvements in inspiratory reserve volume (r = 0.56, P = .024) and exercise tolerance (r = 0.63, P = .008).ConclusionsLung deflation induced by e-BLVR accelerated exercise Vo₂ kinetics in patients with emphysema. This beneficial effect appears to be related mechanistically to an enhanced cardiovascular response to exercise, which may contribute to improved functional capacity.Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…