• Medical care · Feb 2005

    Comparative Study

    Mortality after cardiac bypass surgery: prediction from administrative versus clinical data.

    • Jane M Geraci, Michael L Johnson, Howard S Gordon, Nancy J Petersen, A Laurie Shroyer, Frederick L Grover, and Nelda P Wray.
    • Houston Center for Quality of Care and Utilization Studies, Houston Veterans Affairs Medical Center, and the Section of Health Services Research, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA. jmgeraci@mdanderson.org
    • Med Care. 2005 Feb 1; 43 (2): 149-58.

    BackgroundRisk-adjusted outcome rates frequently are used to make inferences about hospital quality of care. We calculated risk-adjusted mortality rates in veterans undergoing isolated coronary artery bypass surgery (CABS) from administrative data and from chart-based clinical data and compared the assessment of hospital high and low outlier status for mortality that results from these 2 data sources.Study PopulationWe studied veterans who underwent CABS in 43 VA hospitals between October 1, 1993, and March 30, 1996 (n=15,288).MethodsTo evaluate administrative data, we entered 6 groups of International Classification of Diseases (ICD)-9-CM codes for comorbid diagnoses from the VA Patient Treatment File (PTF) into a logistic regression model predicting postoperative mortality. We also evaluated counts of comorbid ICD-9-CM codes within each group, along with 3 common principal diagnoses, weekend admission or surgery, major procedures associated with CABS, and demographic variables. Data from the VA Continuous Improvement in Cardiac Surgery Program (CICSP) were used to create a separate clinical model predicting postoperative mortality. For each hospital, an observed-to-expected (O/E) ratio of mortality was calculated from (1) the PTF model and (2) the CICSP model. We defined outlier status as an O/E ratio outside of 1.0 (based on the hospital's 90% confidence interval). To improve the statistical and predictive power of the PTF model, selected clinical variables from CICSP were added to it and outlier status reassessed.ResultsSignificant predictors of postoperative mortality in the PTF model included 1 group of comorbid ICD-9-CM codes, intraortic balloon pump insertion before CABS, angioplasty on the day of or before CABS, weekend surgery, and a principal diagnosis of other forms of ischemic heart disease. The model's c-index was 0.698. As expected, the CICSP model's predictive power was significantly greater than that of the administrative model (c=0.761). The addition of just 2 CICSP variables to the PTF model improved its predictive power (c=0.741). This model identified 5 of 6 high mortality outliers identified by the CICSP model. Additional CICSP variables were statistically significant predictors but did not improve the assessment of high outlier status.ConclusionsModels using administrative data to predict postoperative mortality can be improved with the addition of a very small number of clinical variables. Limited clinical improvements of administrative data may make it suitable for use in quality improvement efforts.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.