• J. Neurophysiol. · Jan 1988

    Potassium-induced spontaneous electrographic seizures in the rat hippocampal slice.

    • S F Traynelis and R Dingledine.
    • Department of Pharmacology, University of North Carolina, Chapel Hill 27514.
    • J. Neurophysiol. 1988 Jan 1; 59 (1): 259-76.

    Abstract1. The CA1 region of rat hippocampal slices bathed in 8.5 mM interstitial K+ ([K+]o) exhibited spontaneous 20- to 90-s electrographic seizures at regular intervals of 1-8 min. In these same slices CA3 neurons generated spontaneous interictal bursts that propagated throughout the pyramidal cell subfields. CA1 electrographic seizures contained components reminiscent of discharges recorded in vivo during tonic-clonic motor seizures. The tonic phase lasted 1-10 s, consisted of a sustained depolarization and firing of CA1 pyramidal cells, and was associated with a negative extracellular potential in the cell layer. The clonic phase lasted tens of seconds and was composed of paroxysmal bursts with afterdischarges in pyramidal cells. 2. Electrographic seizures in CA1 were focal in nature in that they did not invade the CA3 region. Moreover, in approximately 85% of all slices the frequency and amplitude of interictal bursts in CA3 did not change during a CA1 seizure. 3. Both the tonic phase and each clonic discharge of an electrographic seizure were triggered synaptically by a CA3 interictal burst. Microlesions of the Schaffer collateral input abolished CA1 seizures in high [K+]o, and electrical stimulation of these afferents, in a pattern designed to mimic interictal input, restored seizures. Likewise, similarly patterned electrical stimulation of these fibers in slices bathed in high [K+]o with the CA3 region removed reliably evoked electrographic seizures with period and duration similar to spontaneous seizures in whole slices. 4. Electrographic seizures but not CA3 interictal bursts could be reversibly abolished by lowering the temperature from 35-37 to 28-30 degrees C or by the competitive N-methyl-D-aspartate (NMDA) receptor antagonist D-2-amino-5-phosphonovaleric acid (5-10 microM). The inactive isomer, L-2-amino-5-phosphonovaleric acid (25 microM) did not eliminate seizures. 5. Neither the frequency nor intensity of interictal bursts recorded in the CA3 region changed in the minute preceding seizure initiation. Thus, although the presence of interictal input from the CA3 region is required for CA1 seizure generation, it appears that electrographic seizures do not result from a change in the quality or quantity of interictal input to the CA1 region. 6. During the 30- to 60-s period leading to a seizure the excitability of CA1 pyramidal cells appeared to increase gradually. Over the interseizure interval both CA1 pyramidal cells and glia gradually depolarized, the intensity of interictal bursts recorded in the CA1 region increased, and the extracellular DC potential recorded in the CA1 cell layer drifted negative.(ABSTRACT TRUNCATED AT 400 WORDS)

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.