• Brain research bulletin · Jan 2013

    Spinal interaction between the highly selective μ agonist DAMGO and several δ opioid receptor ligands in naive and morphine-tolerant mice.

    • A K Szentirmay, K P Király, N Lenkey, E Lackó, M Al-Khrasani, T Friedmann, J Timár, S Gyarmati, G Tóth, S Fürst, and P Riba.
    • Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad Tér 4, P.O. Box 370, H-1445 Budapest, Hungary.
    • Brain Res. Bull. 2013 Jan 1; 90: 66-71.

    AbstractSince the discovery of opioid receptor dimers their possible roles in opioid actions were intensively investigated. Here we suggest a mechanism that may involve the μ-δ opioid heterodimers. The exact role of δ opioid receptors in antinociception and in the development of opioid tolerance is still unclear. While receptor up-regulation can be observed during the development of opioid tolerance no μ receptor down-regulation could be detected within five days. In our present work we investigated how the selective δ opioid receptor agonists and antagonists influence the antinociceptive effect of the selective μ receptor agonist DAMGO in naïve and morphine-tolerant mice. We treated male NMRI mice with 200 μmol/kg subcutaneous (s.c.) morphine twice daily for three days. On the fourth day we measured the antinociceptive effect of DAMGO alone and combined with delta ligands: DPDPE, deltorphin II (agonists), TIPP and TICPψ (antagonists), respectively, administered intrathecally (i.t.) in mouse tail-flick test. In naive control mice none of the δ ligands caused significant changes in the antinociceptive action of DAMGO. The treatment with s.c. morphine resulted in approximately four-fold tolerance to i.t. DAMGO, i.e. the ED₅₀ value of DAMGO was four times as high as in naive mice. 500 and 1000 pmol/mouse of the δ₁ selective agonist DPDPE enhanced the tolerance to DAMGO while 1000 pmol/mouse of the δ₂ selective agonist deltorphin II did not influence the degree of tolerance. However, both δ antagonists TIPP and TICPψ potentiated the antinociceptive effect of i.t. DAMGO, thus they restored the potency of DAMGO to the control level. The inhibitory action of DPDPE against the antinociceptive effect of DAMGO could be antagonized by TIPP and TICPψ. We hypothesize that during the development of morphine tolerance the formation of μδ heterodimers may contribute to the spinal opioid tolerance. δ ligands may affect the dimer formation differently. Those, like DPDPE may facilitate the dimer formation hence inhibit the antinociceptive effect of DAMGO by causing virtual μ receptor down-regulation. Ligands that do not affect the dimer formation do not influence antinociception either but ligands with the presumed capability of disconnecting the dimers may decrease the spinal tolerance to DAMGO.Copyright © 2012 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.