• Comput. Biol. Med. · Jun 2005

    Comparative Study

    Automatic detection of erthemato-squamous diseases using adaptive neuro- fuzzy inference systems.

    • Elif Derya Ubeyli and Inan Güler.
    • Department of Electronics and Computer Education, Faculty of Technical Education, Gazi University, Ankara, Turkey.
    • Comput. Biol. Med. 2005 Jun 1; 35 (5): 421-433.

    AbstractA new approach based on adaptive neuro-fuzzy inference system (ANFIS) was presented for detection of erythemato-squamous diseases. The domain contained records of patients with known diagnosis. Given a training set of such records, the ANFIS classifiers learned how to differentiate a new case in the domain. The six ANFIS classifiers were used to detect the six erythemato-squamous diseases when 34 features defining six disease indications were used as inputs. To improve diagnostic accuracy, the seventh ANFIS classifier (combining ANFIS) was trained using the outputs of the six ANFIS classifiers as input data. The proposed ANFIS model combined the neural network adaptive capabilities and the fuzzy logic qualitative approach. Some conclusions concerning the impacts of features on the detection of erythemato-squamous diseases were obtained through analysis of the ANFIS. The performances of the ANFIS model were evaluated in terms of training performances and classification accuracies and the results confirmed that the proposed ANFIS model has some potential in detecting the erythemato-squamous diseases. The ANFIS model achieved accuracy rates which were higher than that of the stand-alone neural network model.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.