• Critical care medicine · Oct 2015

    Human Albumin Improves Long-Term Behavioral Sequelae After Subarachnoid Hemorrhage Through Neurovascular Remodeling.

    • Yi Xie, Wenhua Liu, Xiaohao Zhang, Liumin Wang, Lili Xu, Yunyun Xiong, Lian Yang, Hongfei Sang, Ruidong Ye, and Xinfeng Liu.
    • Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
    • Crit. Care Med. 2015 Oct 1;43(10):e440-9.

    ObjectiveSubarachnoid hemorrhage results in significant long-lasting neurologic sequelae. Here, we investigated whether human albumin improves long-term outcomes in experimental subarachnoid hemorrhage and whether neurovascular remodeling is involved in the protection of albumin.DesignLaboratory investigation.SettingHospital research laboratory.SubjectsMale Sprague-Dawley rats.InterventionsRats underwent subarachnoid hemorrhage by endovascular perforation. Albumin of either 0.63 or 1.25 g/kg was injected IV immediately after the surgery. Modified Garcia test, beam-walking test, novel object recognition, and Morris water maze were employed to determine the behavioral deficits. The effects of albumin on early neurovascular dysfunction and chronic synaptic plasticity were also studied.Measurements And Main ResultsBoth doses of albumin significantly improved the sensorimotor scores (F = 31.277; p = 0.001) and cognitive performance (F = 7.982; p = 0.001 in novel object recognition test; and F = 3.431; p = 0.026 in the latency analysis of Morris water maze test) for at least 40 days after subarachnoid hemorrhage. There were remarkable microvasculature hypoperfusion, intracranial pressure rise, early vasoconstriction, neural apoptosis, and degeneration in subarachnoid hemorrhage rats, with albumin significantly attenuating such neurovascular dysfunction. Furthermore, albumin markedly prevented blood-brain barrier disruption, as indicated by less blood-brain barrier leakage, preserved blood-brain barrier-related proteins, and dampened gelatinase activities. The expressions of key synaptic elements were up-regulated with albumin supplementation in both acute and chronic phases. Accordingly, a higher dendritic spine density was observed in the prefrontal and hippocampal areas of albumin-treated subarachnoid hemorrhage animals.ConclusionsAlbumin at low-to-moderate doses markedly improves long-term neurobehavioral sequelae after subarachnoid hemorrhage, which may involve an integrated process of neurovascular remodeling.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.