• J. Neurophysiol. · Jul 2013

    BDNF Val66Met polymorphism alters spinal DC stimulation-induced plasticity in humans.

    • Jean-Charles Lamy and Maxwell Boakye.
    • Centre de la Sensorimotricité, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8194, Université Paris Descartes, Sorbonne Paris Cité, Unité de Formation et de Recherche Biomédicale, Paris, France. jeancharles.lamy@gmail.com
    • J. Neurophysiol. 2013 Jul 1; 110 (1): 109-16.

    AbstractThe brain-derived neurotrophic factor gene (BDNF) is one of many genes thought to influence neuronal survival, synaptic plasticity, and neurogenesis. A common single nucleotide polymorphism (SNP) of the BDNF gene due to valine-to-methionine substitution at codon 66 (BDNF Val66Met) in the normal population has been associated with complex neuronal phenotype, including differences in brain morphology, episodic memory, or cortical plasticity following brain stimulation and is believed to influence synaptic changes following motor learning task. However, the effect of this polymorphism on spinal plasticity remains largely unknown. Here, we used anodal transcutaneous spinal direct current stimulation (tsDCS), a novel noninvasive technique that induces plasticity of spinal neuronal circuits in healthy subjects. To investigate whether the susceptibility of tsDCS probes of spinal plasticity is significantly influenced by BDNF polymorphism, we collected stimulus-response curves of the soleus (Sol) H reflex before, during, at current offset, and 15 min after anodal tsDCS delivered at Th11 (2.5 mA, 15 min, 0.071 mA/cm(2), and 64 mC/cm(2)) in 17 healthy, Met allele carriers and 17 Val homozygotes who were matched for age and sex. Anodal tsDCS induced a progressive leftward shift of recruitment curve of the H reflex during the stimulation that persisted for at least 15 min after current offset in Val/Val individuals. In contrast, this shift was not observed in Met allele carriers. Our findings demonstrate for the first time that the BDNF Val66Met genotype impacts spinal plasticity in humans, as assessed by tsDCS, and may be one factor influencing the natural response of the spinal cord to injury or disease.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.