• Pediatric research · Mar 2005

    Effect of moderate hypercapnic hypoxia on cerebral dopaminergic activity and brain O2 uptake in intrauterine growth-restricted newborn piglets.

    • Reinhard Bauer, Bernd Walter, Gerd Vorwieger, Anne Fritz, Frank Füchtner, Ulrich Zwiener, and Peter Brust.
    • Institute of Pathophysiology and Pathobiochemistry, Universitätsklinikum Jena, Friedrich Schiller University, D-07740 Jena, Germany. Reinhard.Bauer@mti.uni-jena.de
    • Pediatr. Res. 2005 Mar 1; 57 (3): 363-70.

    AbstractThere is evidence that intrauterine growth restriction (IUGR) is associated with altered dopaminergic function in the immature brain. Compelling evidence exists that in the newborn brain, specific structures are especially vulnerable to O2 deprivation. The dopaminergic system is shown to be sensitive to O2 deprivation in the immature brain. However, the respective enzyme activities have not been measured in the living neonatal brain after IUGR under hypercapnic hypoxia (H/H). Therefore, 18F-labeled 6-fluoro-L-3,4-dihydroxyphenylalanine (FDOPA) together with positron emission tomography was used to estimate the aromatic amino acid decarboxylase activity of the brain of seven normal weight (body weight 2078 +/- 434 g) and seven IUGR newborn piglets (body weight 893 +/- 109 g). Two positron emission tomography scans were performed in each piglet. All animals underwent a period of normoxia and moderate H/H. Simultaneously, cerebral blood flow was measured with colored microspheres and cerebral metabolic rate of O2 was determined. In newborn normal-weight piglets, the rate constant for FDOPA decarboxylation was markedly increased in mesostriatal regions during H/H, whereas brain oxidative metabolism remained unaltered. In contrast, moderate H/H induced in IUGR piglets a marked reduction of clearance rates for FDOPA metabolites (p <0.05), which was accompanied by a tendency of lowering the rate constant for FDOPA conversion. Furthermore, IUGR piglets maintained cerebral O2 uptake in the early period of H/H, but during the late period of H/H, a significantly reduced cerebral metabolic rate of O2 occurred (p <0.05). Thus, IUGR is accompanied by a missing activation of dopaminergic activity and attenuated brain oxidative metabolism during moderate H/H. This may indicate endogenous brain protection against O2 deprivation.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.