• Mol Pain · Jan 2016

    Functional inhibition of chemokine receptor CCR2 by dicer-substrate-siRNA prevents pain development.

    • Valérie Bégin-Lavallée, Élora Midavaine, Marc-André Dansereau, Pascal Tétreault, Jean-Michel Longpré, Ashley M Jacobi, Scott D Rose, Mark A Behlke, Nicolas Beaudet, and Philippe Sarret.
    • Department of Pharmacology and Physiology, Institut de Pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada Philippe.Sarret@USherbrooke.ca.
    • Mol Pain. 2016 Jan 1; 12.

    BackgroundAccumulating evidence suggests that the C-C chemokine ligand 2 (CCL2, or monocyte chemoattractant protein 1) acts as a neuromodulator in the central nervous system through its binding to the C-C chemokine receptor 2 (CCR2). Notably, it is well established that the CCL2/CCR2 axis plays a key role in neuron-glia communication as well as in spinal nociceptive transmission. Gene silencing through RNA interference has recently emerged as a promising avenue in research and drug development, including therapeutic management of chronic pain. In the present study, we used 27-mer Dicer-substrate small interfering RNA (DsiRNA) targeting CCR2 and assessed their ability to reverse the nociceptive behaviors induced by spinal CCL2 injection or following intraplantar injection of complete Freund's adjuvant.ResultsTo this end, we first developed high-potency DsiRNAs designed to target different sequences distributed across the rat CCR2 (rCCR2) messenger RNA. For optimization, methyl groups were added to the two most potent DsiRNA candidates (Evader and M7 2'-O-methyl modified duplexes) in order to improve in vivo duplex stability and to reduce potential immunostimulatory activity. Our results demonstrated that all modified candidates formulated with the cell-penetrating peptide reagent Transductin showed strong RNAi activity following intrathecal delivery, exhibiting >50% rCCR2 knockdown in lumbar dorsal root ganglia. Accordingly, we found that these DsiRNA duplexes were able to reduce spinal microglia activation and were effective at blocking CCL2-induced mechanical hypersensitivity. Along with similar reductions of rCCR2 messenger RNA, both sequences and methylation patterns were similarly effective in inhibiting the CCL2 nociceptive action for the whole seven days testing period, compared to mismatch DsiRNA. DsiRNAs against CCR2 also reversed the hypernociceptive responses observed in the complete Freund's adjuvant-induced inflammatory chronic pain model.ConclusionAltogether, these results validate CCR2 as a an appropriate molecular target for pain control and demonstrate that RNAi-based gene therapy represent an highly specific alternative to classical pharmacological approaches to treat central pathologies such as chronic pain.© The Author(s) 2016.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…