• J. Neurophysiol. · Nov 1990

    Comparative Study

    Comparison of heat and mechanical receptive fields of cutaneous C-fiber nociceptors in monkey.

    • R D Treede, R A Meyer, and J N Campbell.
    • Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205.
    • J. Neurophysiol. 1990 Nov 1; 64 (5): 1502-13.

    Abstract1. Receptive-field properties were investigated in cutaneous C-fiber nociceptive afferents (CMH) responsive to mechanical and heat stimuli. Teased-fiber techniques were used to record from 28 CMHs that innervated the hairy skin of upper or lower limb in anesthetized monkeys. 2. The response to mechanical stimuli was studied with the use of calibrated von Frey probes. The response to heat stimuli was studied with the use of a laser thermal stimulator that provided stepped increases in skin temperature with rise times to the desired temperature near 100 ms. The size of the receptive field (RF) for mechanical stimuli was determined by use of a suprathreshold stimulus that consisted of a 0.5-mm-diam probe that exerted a 200-mN force (10 bar). The size of the heat RF was determined by use of a 49 degrees C stimulus applied to a 7.5-mm-diam area for 1 s. 3. Heat thresholds were determined with an ascending series of stimulus intensities and were found to be stable over many hours: they ranged from 37 to 46 degrees C (mean, 41.1 degrees C). Mechanical thresholds ranged from 1.3 to 7.3 bar (mean, 3.3 bar). There was no correlation between mechanical and heat thresholds. Both thresholds extended well below the corresponding psychophysical pain thresholds in the literature. This suggests that spatial and/or temporal summation of C-fiber input are important for pain induced by either stimulus modality. 4. Mechanical RF diameters ranged from 3.3 to 9.6 mm (mean, 4.7 mm); heat RF diameters ranged from punctate (less than 1 mm) to 9.5 mm (mean, 4.3 mm). There was a significant linear correlation between mechanical and heat RF sizes with a slope of one. The distance between the center of the mechanical RF and the center of the heat RF along one axis ranged from 0 to 1.1 mm (mean, 0.4 mm). These data indicate that the heat RFs coincided with the mechanical RFs. 5. Within the mechanical RF determined with the suprathreshold stimuli, all CMHs had one or more punctate areas of maximal mechanical sensitivity where mechanical threshold was lowest. Heat excitability extended greater than 2 mm beyond these mechanically sensitive spots. Because lateral transmission of the heat stimulus is small, this indicates that heat transduction occurs outside the regions of maximal mechanical sensitivity. 6. Both the threshold to heat and the response magnitude at suprathreshold intensities depended on the percentage of the RF area overlapped by the heat stimulus. This indicates that multiple transducer sites probably contribute to the total evoked response.(ABSTRACT TRUNCATED AT 400 WORDS)

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…