• NeuroImage · Oct 2009

    Improvement of brain segmentation accuracy by optimizing non-uniformity correction using N3.

    • Weili Zheng, Michael W L Chee, and Vitali Zagorodnov.
    • School of Computer Engineering, Nanyang Technological University, Singapore.
    • Neuroimage. 2009 Oct 15; 48 (1): 73-83.

    AbstractSmoothly varying and multiplicative intensity variations within MR images that are artifactual, can reduce the accuracy of automated brain segmentation. Fortunately, these can be corrected. Among existing correction approaches, the nonparametric non-uniformity intensity normalization method N3 (Sled, J.G., Zijdenbos, A.P., Evans, A.C., 1998. Nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans. Med. Imag. 17, 87-97.) is one of the most frequently used. However, at least one recent study (Boyes, R.G., Gunter, J.L., Frost, C., Janke, A.L., Yeatman, T., Hill, D.L.G., Bernstein, M.A., Thompson, P.M., Weiner, M.W., Schuff, N., Alexander, G.E., Killiany, R.J., DeCarli, C., Jack, C.R., Fox, N.C., 2008. Intensity non-uniformity correction using N3 on 3-T scanners with multichannel phased array coils. NeuroImage 39, 1752-1762.) suggests that its performance on 3 T scanners with multichannel phased-array receiver coils can be improved by optimizing a parameter that controls the smoothness of the estimated bias field. The present study not only confirms this finding, but additionally demonstrates the benefit of reducing the relevant parameter values to 30-50 mm (default value is 200 mm), on white matter surface estimation as well as the measurement of cortical and subcortical structures using FreeSurfer (Martinos Imaging Centre, Boston, MA). This finding can help enhance precision in studies where estimation of cerebral cortex thickness is critical for making inferences.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…