• Physiological measurement · May 2008

    Robust electrocardiogram (ECG) beat classification using discrete wavelet transform.

    • Fayyaz-ul-Amir Afsar Minhas and Muhammad Arif.
    • Department of Computer and Information Sciences, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan. afsar@pieas.edu.pk
    • Physiol Meas. 2008 May 1; 29 (5): 555-70.

    AbstractThis paper presents a robust technique for the classification of six types of heartbeats through an electrocardiogram (ECG). Features extracted from the QRS complex of the ECG using a wavelet transform along with the instantaneous RR-interval are used for beat classification. The wavelet transform utilized for feature extraction in this paper can also be employed for QRS delineation, leading to reduction in overall system complexity as no separate feature extraction stage would be required in the practical implementation of the system. Only 11 features are used for beat classification with the classification accuracy of approximately 99.5% through a KNN classifier. Another main advantage of this method is its robustness to noise, which is illustrated in this paper through experimental results. Furthermore, principal component analysis (PCA) has been used for feature reduction, which reduces the number of features from 11 to 6 while retaining the high beat classification accuracy. Due to reduction in computational complexity (using six features, the time required is approximately 4 ms per beat), a simple classifier and noise robustness (at 10 dB signal-to-noise ratio, accuracy is 95%), this method offers substantial advantages over previous techniques for implementation in a practical ECG analyzer.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…