-
Langenbecks Arch Surg · Oct 2003
Experimental models to study microcirculatory dysfunction in muscle ischemia-reperfusion and osteomyocutaneous flap transfer.
- Michael D Menger, Matthias W Laschke, Michaela Amon, Rene Schramm, Henrik Thorlacius, Martin Rücker, and Brigitte Vollmar.
- Institute for Clinical and Experimental Surgery, University of Saarland, 66421 Homburg/Saar, Germany. exmdme@uniklinik-saarland.de
- Langenbecks Arch Surg. 2003 Oct 1; 388 (5): 281-90.
BackgroundDuring the past decade, experimental studies have provided convincing evidence that microcirculatory dysfunction plays a pivotal role in the manifestation of tissue injury in ischemia-reperfusion and osteomyocutaneous flap transfer. The study of the mechanisms of injury, however, requires sophisticated experimental in vivo models. With the use of microsurgical techniques, osteomyocutaneous flap transfer can successfully be performed in rat hind limbs, allowing in vivo fluorescent microscopic analysis of post-ischemic microcirculatory dysfunction in all tissues involved, including periosteum, striated muscle, subcutis and skin. The drawback of this "acute" model is that the period of analysis is restricted to a few hours only.MethodTo overcome this limitation, the "chronic" dorsal skinfold chamber preparation, containing striated muscle and subcutis, can be used. This model allows one to study microcirculatory dysfunction after both tourniquet-induced and pressure-induced ischemia-reperfusion-induced tissue injury over a period of up to 3 weeks.ResultsWith the use of these models, recent investigations have demonstrated that ischemia-reperfusion and osteomyocutaneous flap transfer are associated with capillary perfusion failure (no-reflow), mediated by intravascular hemoconcentration, endothelial swelling and endothelin (ET)-1-mediated microvascular constriction. In addition, post-ischemic reperfusion provokes an inflammatory response (reflow paradox) in post-capillary venules, which is characterized by beta2-integrin-mediated and intercellular adhesion molecule (ICAM)-1-mediated leukocyte adhesion and vascular hyperpermeability, which results in interstitial edema formation. Treatment studies have produced evidence that isovolemic hemodilution and heat shock protein induction are successful in ameliorating capillary no-reflow, while blockade of adhesion molecules, inactivation of oxygen radicals and, also, induction of heat shock proteins, are capable of reducing the post-ischemic inflammatory response.ConclusionThese experimental results not only demonstrate the importance of the use of advanced in vivo methods to delineate pathophysiological mechanisms in complex disease models, but may also provide a basis for potential prospective randomized trials to test the benefit for the patient in the daily clinical routine.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.