Langenbeck's archives of surgery
-
Langenbecks Arch Surg · Oct 2003
Temporal profile of microvascular disturbances in rat tibial periosteum following closed soft tissue trauma.
Bone devascularization due to impaired periosteal perfusion following fracture with severe soft tissue trauma has been proposed to precede and underlie perturbed bone healing. The extent and temporal relationship of periosteal microcirculatory deteriorations after severe closed soft tissue injury (CSTI) are not known. We hypothesized that periosteal microcirculation is adversely affected and the manifestation of trauma-initiated microvascular impairment in periosteum is substantially prolonged following CSTI. ⋯ Isolated CSTI in absence of a fracture exerts long-lasting disturbances in periosteal microcirculation, suggesting a delayed temporal profile in manifestation of CSTI-induced periosteal microvascular dysfunction and inflammation. These observations may have therapeutic implications in terms of preserving periosteal integrity and considering the interaction of skeletal muscle damage and periosteal microvascular injury during management of musculoskeletal trauma.
-
Langenbecks Arch Surg · Oct 2003
Experimental models to study microcirculatory dysfunction in muscle ischemia-reperfusion and osteomyocutaneous flap transfer.
During the past decade, experimental studies have provided convincing evidence that microcirculatory dysfunction plays a pivotal role in the manifestation of tissue injury in ischemia-reperfusion and osteomyocutaneous flap transfer. The study of the mechanisms of injury, however, requires sophisticated experimental in vivo models. With the use of microsurgical techniques, osteomyocutaneous flap transfer can successfully be performed in rat hind limbs, allowing in vivo fluorescent microscopic analysis of post-ischemic microcirculatory dysfunction in all tissues involved, including periosteum, striated muscle, subcutis and skin. The drawback of this "acute" model is that the period of analysis is restricted to a few hours only. ⋯ These experimental results not only demonstrate the importance of the use of advanced in vivo methods to delineate pathophysiological mechanisms in complex disease models, but may also provide a basis for potential prospective randomized trials to test the benefit for the patient in the daily clinical routine.