-
- Masayuki Ohashi, Toru Hirano, Kei Watanabe, Hirokazu Shoji, Nobuko Ohashi, Hiroshi Baba, Naoto Endo, and Tatsuro Kohno.
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi Dori, Chuo-Ku, Niigata City 951-8510, Japan.
- Neuroscience. 2016 Sep 7; 331: 206-20.
AbstractHydrogen peroxide (H2O2), a reactive oxygen species, is an important signaling molecule for synaptic and neuronal activity in the central nervous system; it is produced excessively in brain ischemia and spinal cord injury. Although H2O2-mediated modulations of synaptic transmission have been reported in ventral horn (VH) neurons of the rat spinal cord, the effects of H2O2 on neuronal excitability and membrane properties remain poorly understood. Accordingly, the present study investigated such effects using a whole-cell patch-clamp technique. The bath-application of H2O2 decreased neuronal excitability accompanied by decreased input resistance, firing frequency, and action potential amplitude and by increased rheobase. These H2O2-mediated changes were induced by activation of extrasynaptic, but not synaptic, GABAA receptors. Indeed, GABAergic tonic currents were enhanced by H2O2. On the other hand, the amplitude of medium and slow afterhyperpolarization (mAHP and sAHP), which plays important roles in controlling neuronal excitability and is mediated by small-conductance calcium-activated potassium (SK) channels, was significantly decreased by H2O2. When extrasynaptic GABAA receptors were completely blocked, these decreases of mAHP and sAHP persisted, and H2O2 increased excitability, suggesting that H2O2 per se might have the potential to increase neuronal excitability via decreased SK channel conductance. These findings indicate that activating extrasynaptic GABAA receptors or SK channels may attenuate acute neuronal damage caused by H2O2-induced hyperexcitability and therefore represent a novel therapeutic target for the prevention and treatment of H2O2-induced motor neuron disorders.Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.